Preguntas etiquetadas con garch

Un modelo para series de tiempo en el que la varianza condicional varía en el tiempo y está autocorrelacionada.

8
¿Existe algún estándar de oro para modelar series temporales espaciadas irregularmente?
En el campo de la economía (creo) tenemos ARIMA y GARCH para series de tiempo regularmente espaciadas y Poisson, Hawkes para procesos de puntos de modelado, entonces, ¿qué hay de los intentos de modelar series de tiempo espaciadas irregularmente (de manera desigual)? Existen (al menos) prácticas comunes ? (Si tiene …

4
¿Cuál es la diferencia entre GARCH y ARMA?
Estoy confundido. No entiendo la diferencia entre un proceso ARMA y un proceso GARCH ... para mí existen los mismos no? Aquí está el proceso (G) ARCH (p, q) σ2t=α0+∑i=1qαir2t−iARCH+∑i=1pβiσ2t−iGARCHσt2=α0+∑i=1qαirt−i2⏟ARCH+∑i=1pβiσt−i2⏟GARCH\sigma_t^2 = \underbrace{ \underbrace{ \alpha_0 + \sum_{i=1}^q \alpha_ir_{t-i}^2} _{ARCH} + \sum_{i=1}^p\beta_i\sigma_{t-i}^2} _{GARCH} Y aquí está el ARMA ( p,qp,qp, q ): …
42 arima  garch  finance 

3
Para la intuición, ¿cuáles son algunos ejemplos de la vida real de variables aleatorias no correlacionadas pero dependientes?
Al explicar por qué no correlacionado no implica independiente, hay varios ejemplos que involucran un montón de variables aleatorias, pero todas parecen tan abstractas: 1 2 3 4 . Esta respuesta parece tener sentido. Mi interpretación: una variable aleatoria y su cuadrado pueden no estar correlacionados (ya que aparentemente la …

3
¿Cómo interpretar los parámetros GARCH?
Utilizo un modelo GARCH estándar: rtσ2t=σtϵt=γ0+γ1r2t−1+δ1σ2t−1rt=σtϵtσt2=γ0+γ1rt−12+δ1σt−12\begin{align} r_t&=\sigma_t\epsilon_t\\ \sigma^2_t&=\gamma_0 + \gamma_1 r_{t-1}^2 + \delta_1 \sigma^2_{t-1} \end{align} Tengo diferentes estimaciones de los coeficientes y necesito interpretarlos. Por lo tanto, me pregunto acerca de una buena interpretación, entonces, ¿qué representan , y ?γ0γ0\gamma_0γ1γ1\gamma_1δ1δ1\delta_1 Veo que es algo así como una parte constante. Por …

1
Si es estacionario, ¿es necesariamente estacionario?
Encontré una prueba para una de las propiedades del modelo ARCH que dice que si , entonces es estacionario iff donde el modelo ARCH es:{ X t } ∑ p i = 1 b i &lt; 1E(X2t)&lt;∞E(Xt2)&lt;∞\mathbb{E}(X_t^2) < \infty{Xt}{Xt}\{X_t\}∑pi=1bi&lt;1∑i=1pbi&lt;1\sum_{i=1}^pb_i < 1 Xt=σtϵtXt=σtϵtX_t = \sigma_t\epsilon_t σ2t=b0+b1X2t−1+...bpX2t−pσt2=b0+b1Xt−12+...bpXt−p2\sigma_t^2 = b_0 + b_1X_{t-1}^2 + …

1
Paquete GBM vs. Caret usando GBM
He estado usando el ajuste del modelo caret, pero luego volví a ejecutar el modelo usando el gbmpaquete. Entiendo que el caretpaquete usa gbmy el resultado debe ser el mismo. Sin embargo, solo una ejecución de prueba rápida usando data(iris)muestra una discrepancia en el modelo de aproximadamente 5% usando RMSE …

5
¿Cómo realizar la imputación de valores en una gran cantidad de puntos de datos?
Tengo un conjunto de datos muy grande y faltan alrededor del 5% de valores aleatorios. Estas variables están correlacionadas entre sí. El siguiente conjunto de datos R de ejemplo es solo un ejemplo de juguete con datos correlacionados ficticios. set.seed(123) # matrix of X variable xmat &lt;- matrix(sample(-1:1, 2000000, replace …
12 r  random-forest  missing-data  data-imputation  multiple-imputation  large-data  definition  moving-window  self-study  categorical-data  econometrics  standard-error  regression-coefficients  normal-distribution  pdf  lognormal  regression  python  scikit-learn  interpolation  r  self-study  poisson-distribution  chi-squared  matlab  matrix  r  modeling  multinomial  mlogit  choice  monte-carlo  indicator-function  r  aic  garch  likelihood  r  regression  repeated-measures  simulation  multilevel-analysis  chi-squared  expected-value  multinomial  yates-correction  classification  regression  self-study  repeated-measures  references  residuals  confidence-interval  bootstrap  normality-assumption  resampling  entropy  cauchy  clustering  k-means  r  clustering  categorical-data  continuous-data  r  hypothesis-testing  nonparametric  probability  bayesian  pdf  distributions  exponential  repeated-measures  random-effects-model  non-independent  regression  error  regression-to-the-mean  correlation  group-differences  post-hoc  neural-networks  r  time-series  t-test  p-value  normalization  probability  moments  mgf  time-series  model  seasonality  r  anova  generalized-linear-model  proportion  percentage  nonparametric  ranks  weighted-regression  variogram  classification  neural-networks  fuzzy  variance  dimensionality-reduction  confidence-interval  proportion  z-test  r  self-study  pdf 

1
R / mgcv: ¿Por qué los productos tensoriales te () y ti () producen superficies diferentes?
El mgcvpaquete Rtiene dos funciones para ajustar las interacciones del producto tensorial: te()y ti(). Entiendo la división básica del trabajo entre los dos (ajustar una interacción no lineal versus descomponer esta interacción en efectos principales y una interacción). Lo que no entiendo es por qué te(x1, x2)y ti(x1) + ti(x2) …
11 r  gam  mgcv  conditional-probability  mixed-model  references  bayesian  estimation  conditional-probability  machine-learning  optimization  gradient-descent  r  hypothesis-testing  wilcoxon-mann-whitney  time-series  bayesian  inference  change-point  time-series  anova  repeated-measures  statistical-significance  bayesian  contingency-tables  regression  prediction  quantiles  classification  auc  k-means  scikit-learn  regression  spatial  circular-statistics  t-test  effect-size  cohens-d  r  cross-validation  feature-selection  caret  machine-learning  modeling  python  optimization  frequentist  correlation  sample-size  normalization  group-differences  heteroscedasticity  independence  generalized-least-squares  lme4-nlme  references  mcmc  metropolis-hastings  optimization  r  logistic  feature-selection  separation  clustering  k-means  normal-distribution  gaussian-mixture  kullback-leibler  java  spark-mllib  data-visualization  categorical-data  barplot  hypothesis-testing  statistical-significance  chi-squared  type-i-and-ii-errors  pca  scikit-learn  conditional-expectation  statistical-significance  meta-analysis  intuition  r  time-series  multivariate-analysis  garch  machine-learning  classification  data-mining  missing-data  cart  regression  cross-validation  matrix-decomposition  categorical-data  repeated-measures  chi-squared  assumptions  contingency-tables  prediction  binary-data  trend  test-for-trend  matrix-inverse  anova  categorical-data  regression-coefficients  standard-error  r  distributions  exponential  interarrival-time  copula  log-likelihood  time-series  forecasting  prediction-interval  mean  standard-error  meta-analysis  meta-regression  network-meta-analysis  systematic-review  normal-distribution  multiple-regression  generalized-linear-model  poisson-distribution  poisson-regression  r  sas  cohens-kappa 



1
Ajustar un GARCH (1,1) - modelo con covariables en R
Tengo algunas experiencias con el modelado de series de tiempo, en forma de modelos ARIMA simples, etc. Ahora tengo algunos datos que exhiben agrupamiento de volatilidad, y me gustaría intentar comenzar ajustando un modelo GARCH (1,1) en los datos. Tengo una serie de datos y una serie de variables que …
10 r  regression  garch 



2
¿Por qué un modelo estadístico se sobreajusta si se le da un gran conjunto de datos?
Mi proyecto actual puede requerir que construya un modelo para predecir el comportamiento de un determinado grupo de personas. el conjunto de datos de entrenamiento contiene solo 6 variables (la identificación es solo para fines de identificación): id, age, income, gender, job category, monthly spend en el cual monthly spendestá …
8 modeling  large-data  overfitting  clustering  algorithms  error  spatial  r  regression  predictive-models  linear-model  average  measurement-error  weighted-mean  error-propagation  python  standard-error  weighted-regression  hypothesis-testing  time-series  machine-learning  self-study  arima  regression  correlation  anova  statistical-significance  excel  r  regression  distributions  statistical-significance  contingency-tables  regression  optimization  measurement-error  loss-functions  image-processing  java  panel-data  probability  conditional-probability  r  lme4-nlme  model-comparison  time-series  probability  probability  conditional-probability  logistic  multiple-regression  model-selection  r  regression  model-based-clustering  svm  feature-selection  feature-construction  time-series  forecasting  stationarity  r  distributions  bootstrap  r  distributions  estimation  maximum-likelihood  garch  references  probability  conditional-probability  regression  logistic  regression-coefficients  model-comparison  confidence-interval  r  regression  r  generalized-linear-model  outliers  robust  regression  classification  categorical-data  r  association-rules  machine-learning  distributions  posterior  likelihood  r  hypothesis-testing  normality-assumption  missing-data  convergence  expectation-maximization  regression  self-study  categorical-data  regression  simulation  regression  self-study  self-study  gamma-distribution  modeling  microarray  synthetic-data 

3
Prueba post hoc en un ANOVA de diseño mixto 2x3 con SPSS?
Tengo dos grupos de 10 participantes que fueron evaluados tres veces durante un experimento. Para probar las diferencias entre los grupos y entre las tres evaluaciones, ejecuté un ANOVA de diseño mixto 2x3 con group(control, experimental), time(primero, segundo, tres) y group x time. Ambos timey groupresultaron significativos, además hubo una …
8 anova  mixed-model  spss  post-hoc  bonferroni  time-series  unevenly-spaced-time-series  classification  normal-distribution  discriminant-analysis  probability  normal-distribution  estimation  sampling  classification  svm  terminology  pivot-table  random-generation  self-study  estimation  sampling  estimation  categorical-data  maximum-likelihood  excel  least-squares  instrumental-variables  2sls  total-least-squares  correlation  self-study  variance  unbiased-estimator  bayesian  mixed-model  ancova  statistical-significance  references  p-value  fishers-exact  probability  monte-carlo  particle-filter  logistic  predictive-models  modeling  interaction  survey  hypothesis-testing  multiple-regression  regression  variance  data-transformation  residuals  minitab  r  time-series  forecasting  arima  garch  correlation  estimation  least-squares  bias  pca  predictive-models  genetics  sem  partial-least-squares  nonparametric  ordinal-data  wilcoxon-mann-whitney  bonferroni  wilcoxon-signed-rank  traminer  regression  econometrics  standard-error  robust  misspecification  r  probability  logistic  generalized-linear-model  r-squared  effect-size  gee  ordered-logit  bayesian  classification  svm  kernel-trick  nonlinear  bayesian  pca  dimensionality-reduction  eigenvalues  probability  distributions  mathematical-statistics  estimation  nonparametric  kernel-smoothing  expected-value  filter  mse  time-series  correlation  data-visualization  clustering  estimation  predictive-models  recommender-system  sparse  hypothesis-testing  data-transformation  parametric  probability  summations  correlation  pearson-r  spearman-rho  bayesian  replicability  dimensionality-reduction  discriminant-analysis  outliers  weka 
Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.