Preguntas etiquetadas con state-space-models

Describe la dependencia probabilística entre la variable de estado latente y la medición observada.


2
¿Cambiar de modelar un proceso usando una distribución de Poisson para usar una distribución binomial negativa?
\newcommand{\P}{\mathbb{P}} Tenemos un proceso aleatorio que puede-o-no-puede aparecer varias veces en un período determinado de tiempo TTT . Tenemos una fuente de datos de un modelo preexistente de este proceso, que proporciona la probabilidad de que ocurran varios eventos en el período 0≤t&lt;T0≤t&lt;T0 \leq t < T . Este modelo …



1
Criterios para seleccionar el "mejor" modelo en un modelo oculto de Markov
Tengo un conjunto de datos de series temporales en el que estoy tratando de ajustar un Modelo de Markov Oculto (HMM) para estimar el número de estados latentes en los datos. Mi pseudo código para hacer esto es el siguiente: for( i in 2 : max_number_of_states ){ ... calculate HMM …




1
Explicando los filtros de Kalman en modelos de espacio de estado
¿Cuáles son los pasos involucrados en el uso de filtros de Kalman en modelos de espacio de estado? He visto un par de formulaciones diferentes , pero no estoy seguro de los detalles. Por ejemplo, Cowpertwait comienza con este conjunto de ecuaciones: θt=Gtθt-1+wtyt=F′tθt+vtyt=Ft′θt+vty_{t} = F^{'}_{t}\theta_{t}+v_{t} θt=Gtθt−1+wtθt=Gtθt−1+wt\theta_{t} = G_{t}\theta_{t-1}+w_{t} donde y …

1
Filtro de Kalman vs. alisar splines
P: ¿Para qué datos es apropiado usar modelado de espacio de estado y filtrado de Kalman en lugar de suavizar splines y viceversa? ¿Hay alguna relación de equivalencia entre los dos? Estoy tratando de obtener una comprensión de alto nivel de cómo encajan estos métodos. Hojeé la nueva Estimación gaussiana …

3
Cómo realizar SVD para imputar valores perdidos, un ejemplo concreto
He leído los excelentes comentarios sobre cómo lidiar con los valores perdidos antes de aplicar SVD, pero me gustaría saber cómo funciona con un ejemplo simple: Movie1 Movie2 Movie3 User1 5 4 User2 2 5 5 User3 3 4 User4 1 5 User5 5 1 5 Dada la matriz anterior, …
8 r  missing-data  data-imputation  svd  sampling  matlab  mcmc  importance-sampling  predictive-models  prediction  algorithms  graphical-model  graph-theory  r  regression  regression-coefficients  r-squared  r  regression  modeling  confounding  residuals  fitting  glmm  zero-inflation  overdispersion  optimization  curve-fitting  regression  time-series  order-statistics  bayesian  prior  uninformative-prior  probability  discrete-data  kolmogorov-smirnov  r  data-visualization  histogram  dimensionality-reduction  classification  clustering  accuracy  semi-supervised  labeling  state-space-models  t-test  biostatistics  paired-comparisons  paired-data  bioinformatics  regression  logistic  multiple-regression  mixed-model  random-effects-model  neural-networks  error-propagation  numerical-integration  time-series  missing-data  data-imputation  probability  self-study  combinatorics  survival  cox-model  statistical-significance  wilcoxon-mann-whitney  hypothesis-testing  distributions  normal-distribution  variance  t-distribution  probability  simulation  random-walk  diffusion  hypothesis-testing  z-test  hypothesis-testing  data-transformation  lognormal  r  regression  agreement-statistics  classification  svm  mixed-model  non-independent  observational-study  goodness-of-fit  residuals  confirmatory-factor  neural-networks  deep-learning 

3
Encuentra distribución y transforma a distribución normal
Tengo datos que describen con qué frecuencia tiene lugar un evento durante una hora ("número por hora", nph) y cuánto duran los eventos ("duración en segundos por hora", dph). Estos son los datos originales: nph &lt;- c(2.50000000003638, 3.78947368414551, 1.51456310682008, 5.84686774940732, 4.58823529414907, 5.59999999993481, 5.06666666666667, 11.6470588233699, 1.99999999998209, NA, 4.46153846149851, 18, 1.05882352939726, 9.21739130425452, …
8 normal-distribution  data-transformation  logistic  generalized-linear-model  ridge-regression  t-test  wilcoxon-signed-rank  paired-data  naive-bayes  distributions  logistic  goodness-of-fit  time-series  eviews  ecm  panel-data  reliability  psychometrics  validity  cronbachs-alpha  self-study  random-variable  expected-value  median  regression  self-study  multiple-regression  linear-model  forecasting  prediction-interval  normal-distribution  excel  bayesian  multivariate-analysis  modeling  predictive-models  canonical-correlation  rbm  time-series  machine-learning  neural-networks  fishers-exact  factorisation-theorem  svm  prediction  linear  reinforcement-learning  cdf  probability-inequalities  ecdf  time-series  kalman-filter  state-space-models  dynamic-regression  index-decomposition  sampling  stratification  cluster-sample  survey-sampling  distributions  maximum-likelihood  gamma-distribution 
Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.