Encuentra distribución y transforma a distribución normal


8

Tengo datos que describen con qué frecuencia tiene lugar un evento durante una hora ("número por hora", nph) y cuánto duran los eventos ("duración en segundos por hora", dph).

Estos son los datos originales:

nph <- c(2.50000000003638, 3.78947368414551, 1.51456310682008, 5.84686774940732, 4.58823529414907, 5.59999999993481, 5.06666666666667, 11.6470588233699, 1.99999999998209, NA, 4.46153846149851, 18, 1.05882352939726, 9.21739130425452, 27.8399999994814, 15.3750000002237, NA, 6.00000000004109, 9.71428571436649, 12.4848484848485, 16.5034965037115, 20.6666666666667, 3.49999999997453, 4.65882352938624, 4.74999999996544, 3.99999999994522, 2.8, 14.2285714286188, 11.0000000000915, NA, 2.66666666666667, 3.76470588230138, 4.70588235287673, 13.2727272728677, 2.0000000000137, 18.4444444444444, 17.5555555555556, 14.2222222222222, 2.00000000001663, 4, 8.46153846146269, 19.2000000001788, 13.9024390245481, 13, 3.00000000004366, NA, 7.36000000006855, 1.61137440758472, 1.50000000000873, 3.36585365857481, 22.3750000003256, 10.8387096775008, 2.92307692305075, 3.48837209304214, 5.17647058827074, 37.6666666666667, 1.17647058824335, 7.45454545462435, 36.2352941171508, 6.82352941167125, 2.22222222222222, 6.13333333333333, 11.4285714286665, 42.7058823523563, 28.1052631584975, 18.3333333333333, 1.24999999999091, 5.1034482758211, 1.82857142855926, 1.30693069306629, 3.22222222222222, 17.2800000001609, 10.5714285715165, 7.81818181826456, 3.14285714288328, 4.05194805197256, 3.6, 23.0909090904203, 0.249999999998181, 10, 27.3043478258106, 2.49999999998181, 2.00000000001663, 9.14285714293317, 4.74999999996544, 29.3999999996577, 16.9999999998021, 15.7777777777778, 1.74999999998727, 3.46666666666667, 2.45161290324422, 2.05231388331614, 2.60000000001513, 15.4054054053569, 4, 12.2222222222222, 2.46153846151642, 8.15384615399219, 2.23529411761644, 15.1111111111111, 0.23529411764867, 10.5454545455661, 17.5714285715747, 2.3030303030303, 1.37931034481651, 8.32000000007749, 5.1578947368105, 24.1999999997183, 15.4782608694085, 21.8749999998408, 2.74999999997999, 9.91304347823578, 3.86206896548623, 1.16959064328441, 2.84210526319272, 12.857142856929, 4, 3.69230769227463, 2, NA, 1.88888888888889, 15.4285714283148, 0.222222222222222, 6.16666666666667, 13.1034482757569, 3.19999999996275, 4.87499999996453, 2.88000000002682, 5.12499999996271, 26.6666666666667, 9.75000000014188, 17.2048192770602, 1.99999999998545, 1.65517241377981, 3.16666666666667, 2.23529411766237, 6.82352941181143, 2.74999999991996, 2.99999999997817, 11.4929577463281, 1.59999999998137, 8.65116279074452, 5.69230769240964, 13.7777777777778, 0.222222222222222, 10.6000000002468, 13.91304347812, 2.75862068963302, NA, 4.26666666666667, 5.64705882356808, 2.74999999997999, 15.047619047619, 16.6666666666667, 1.49999999998909, 4.62499999996635, 5.71428571428571, 1.83206106868927, 2.44444444444444, 2.4, 3.9999999999709, 2.33333333333333, 3.20000000007451, 5.931034482711, 7.14285714273835, 14.7272727274286, 0.352941176465754, 8.40000000019558, 10.1250000001473, 2.66666666666667, NA, 2.66666666666667, 4.7058823529734, 4.83333333333333, 9.31034482751146, 24.5882352937809, 2.13333333333333, 10.1739130434525, 5.56521739124801, 2.12658227848728, 1.88888888888889, 5.80000000013504, 7.14285714291654, 1.71428571429997, 1.99999999994179, NA, 5.00000000007276, NA, 0.129032258062578, 8.22222222222222, 7.16666666666667, 4.13793103444954, 2.82352941178404, 3.07692307697818, 4.00000000004902, 4.74999999986176, 9.75000000014188, 20.1333333333333, 2.66666666666667, 6.78947368416893, 1.46666666666667, 1.73195876289076, 4.76923076931619, 2.88888888888889, 7.4285714286332, 5.2, 3.384615384676, 4.7727272727399, 6.59999999992317, 11.4545454546667, 1.41176470586302, 11.1999999998696, 6.08000000005662, 4, 4.71428571432492, 5.00000000004158, 6.8, 6.83870967747072, 14.2500000002074, 5.49999999983993, 2.4, 4.71910112354612, 4, 1.72185430463842, 2.44444444444444, 4.30769230776946, 6.30769230780528, 3.53846153852491, 4.35294117641097, NA, 5.99999999990022, NA, NA, 7.42857142857143, 10.1333333333333, 6.79999999992084, 5.54838709681587, 1.83333333333333, 7.06666666666667, 2.9090909091217, 10.8000000001006, NA, 2.13333333333333, NA, 5.09090909090909, 4.21052631570563, 4.00000000003326, 4.28571428571429, 4.28571428574992, 2.49999999998181, 2.76923076928037, 4.99999999985448, 3.87500000005639, NA, NA, 12.2105263159391, 5.44444444444444, 2.6249999999809, 3.74193548389907, 3.28571428574161, 4.88888888888889, 9.33333333333333, 4.21621621620295, NA, 0.8, 4.5306122448549, 4.14285714289159, 3.1137724550985, 0.266666666666667, 5.27272727261567, 1.84615384613731, 8.36363636372488, 2.42857142853104, NA, 2.42857142853104, 8.28571428578318, 1.64705882350685, 8.2, 6.88888888888889, 1.74999999998727, 7.6, 3.33333333333333, 6.24999999995453, 9.56521739120752, 4.93333333333333, 16.4, 2.53333333333333, 7.2, 1.33333333333333, 3.3962264151018, 2, 9.38461538453135, 1.57142857144164, 3.45454545458201, 5.37499999996089, 7.74193548375467, 3.38461538458508, 7, NA, 4.54545454545455, 14.5, 1.93939393939394, 4.33333333333333, 4, 6.58823529402741, 2.90909090902933, 3.32530120480995, 25.6666666666667, 2, 6.54545454545455, 4.4, 3.54378818739119, 1.62499999998818, 4.22222222222222, 2.53333333333333, 14.6666666666667, 2.96296296296296, NA, 3.00000000004366, 16.1999999998114, 1.55555555555556, 3.11111111111111, NA, 4.8, 3.99999999997339, 4, 6.37499999995362, 2.7999999999674, NA, 32.8, 2.49999999998181, 11.0561797754255, NA, 2.75229357793903, 1.7142857142572, 7.66666666666667, 7.28571428577487, 2.36363636358633, 2.14285714287496, 6.27272727274387, 3.62499999997362, 19.6666666666667, 1.71428571427431, 6.60869565210701, 5.57894736838687, 5.84615384610149, 3.03030303030303, 1.33333333333333, 4.87499999996453, 4.71428571432492, 4.74418604653732, 13.0588235292329, 3.12500000004547, NA, 3.37500000004911, 2.41525423729648, 2.37499999998272, 4.54545454550265, 6.28571428576655, 2.55555555555556, 3.17647058819179, 5.59999999993481, 5.85714285719156, 7.42857142844789, NA, 4.83333333333333, 5.33333333333333, 4.48484848484848, 2.93333333333333, 3.83333333333333, 5.52941176474375, 9.33333333333333, 5.16666666666667, 18, 2.82352941178404, 5.54838709681587, 3.55555555555556, 1.25237191650965, 2, 2.16666666666667, 7.16666666666667, 3.00000000002495, 2.83333333333333, 2.48275862068966, 4.42857142860825, 11.1428571426718, NA, 5.52380952380952, 34.3448275859312, 4.75000000006912, 3.26315789471685, 10.2857142857998, 10.5555555555556, 5.00000000004158, 19.0843373493441, 20.6153846152, 2.24999999998363, 8.59259259259259, 4.25806451616101, 2.85714285716014, 5.1578947368105, 8.66666666666667, 3.14285714280487, 6.30769230763582, 6.79999999992084, 8.07692307663376, 5.73333333333333, 8.46153846146269, 2.34482758618807, 4.31999999991953, 4.57142857135254, 2.87500000004184, 2.28571428567627, 0.857142857149985, 10.2352941175069, 3.26086956520914, NA, 13.3333333333333, 2.75000000004002, 6.45161290312889, 3.61290322575218, 1.48854961831995, 3.37499999997544, 4.0540540540413, 5.73333333333333, 3.85714285707871, 3, 6.31578947364551, 1.55555555555556, 7.84615384608358, 0.4, 7.66666666666667, NA, 7.85185185185185, 2.59090909091595, 7.28571428577487, 5.74999999995816, 3.28571428574161, 16.043478260829, 15.8000000003679, 2.50000000003638, NA, 2.06451612904776, 1.82163187855948, 0.874999999993634, 13.2000000001229, 6.92307692301493, 3.7142857143166, 3.00000000001343, 5.83333333333333, 3.86666666666667, 9.39999999989057, 2.49999999998181, 6.24000000005811, 4.58823529414907, 3.72413793109428, 3.21428571427235, 6.85714285719988, 8.42857142864151, 5.23076923086291, 10.5454545455661, 14.1428571429747, 4.00000000005821, 4.08791208795393, 8.47058823517811, 3.94422310755509, 3.62500000005275, 6.0000000001397, 1.33333333333333, 3.73333333333333, 6.31578947352942, NA, 4.53333333333333, 8.46153846169001, 0.470588235287673, 2.28571428571429, 22.7142857144746, 8.00000000012846, 2.8108108108285, 4.57142857146658, 5.87500000008549, 6.42857142862488, 19.2258064513241, 13.4666666666667, 3.46666666666667, 4.90322580648844, 3.51515151515152, 1.56862745098755, 1.53846153844776, 3.63636363636364, 4.71428571432492, 3.06666666666667, 4.61538461546728, NA, 2.83333333333333, 5.53846153841194, 1.80645161287609, 9.14285714285714, 2.42857142853104, 3.2, 5.00000000007276, 4.42857142860825, 6.12500000008913, 3.24999999990541, 4.16326530608288, 14.6666666666667, 5.37499999996089, 7.43478260867684, 9.93548387104236, 3.73205741626378, 2.24999999998363, 13.7777777777778, 4.74074074074074, 7.4285714286332, 3.61904761904762, 7.13513513511269, 5.28571428575824, 5, 2.5882352940822, 11.5000000001673, 27.1249999998026, 2.875, 2.81081081077544, 9.42857142864983, 7.05882352931509, 3.83333333333333, 16.8695652172205, 16.7692307690806, 10.1333333333333, 5.45454545455989, 7.8750000001146, 1.6883116883219, 2.66666666666667, 11.7857142856653, 3.33333333333333, 6.33333333333333, 7.39999999991385, 12.5882352942039, 4.00000000003326, 6.72727272734392, 3.03030303030303, 6, 30.6666666666667, 3.74999999997272, 3.00000000003011, 8.00000000006652, 8.00000000006009, 2.57142857144995, 10.695652173886, 14.2666666666667, 7.75000000011278, 2.51162790697674, 6.33333333333333, 3.28125000004775, 1.88888888888889, 10.4000000002421, 4.87499999996453, 13.7142857143998, 8.5, NA, 4.87499999996453, 8.181818181645, 1.24999999999091, 4.38095238095238, 27.1764705878631, 2.37499999998272, 2.94117647060838, 11.7142857143831, 5.99999999996324, 2.37499999998272, 14.7637795275455, 14.313253012008)
dph <- c(3.12500000004547, 6.69473684199041, 4.3106796117187, 11.6937354988146, 103.882352941888, 10.9999999998719, 7.33333333333333, 20.3529411761918, 5.23076923072239, NA, 4.61538461534328, 47.5555555555556, 2.94117647054795, 18.9565217389385, 44.3199999991745, 28.5000000004147, NA, 10.4705882353658, 19.000000000158, 25.8181818181818, 43.2167832173461, 51.5555555555556, 8.37499999993906, 6.91764705878563, 9.37499999993179, 5.64705882345207, 4.53333333333333, 27.4285714286627, 14.4285714286914, NA, 1.6, 5.76470588227399, 4.70588235287673, 55.2727272733122, 2.11764705883803, 30.8888888888889, 41.2222222222222, 23.4444444444444, 2.42857142859162, 6.2, 17.0769230767702, 21.2800000001982, 40.8292682931466, 14.5, 6.25000000009095, NA, 15.0400000001401, 5.68720379147547, 2.40000000001397, NA, 26.3750000003838, 18.0645161291679, 3.99999999996418, 6.13953488375417, 8.47058823535212, 128.666666666667, 2.23529411766237, 34.1818181821799, 115.999999998411, 5.99999999991782, 5.77777777777778, 10.6666666666667, 15.4285714286997, 54.8235294110138, 81.315789475428, 42.3333333333333, 1.74999999998727, 7.99999999993577, 4.34285714282825, 1.90099009900552, 5.22222222222222, 39.840000000371, 25.1428571430662, 7.81818181826456, 8.57142857149985, 15.2727272728196, 6.4, 93.0909090889387, 0.374999999997272, 23.1666666666667, 29.3913043475286, 0.874999999993634, 1.71428571429997, 13.5714285715414, 5.49999999995998, 134.799999998431, 77.7999999990943, 18, 2.24999999998363, 5.73333333333333, 3.09677419357165, 2.29376257547098, 5.70000000003318, 23.1891891891162, 14, 13.5555555555556, 1.69230769229254, 9.23076923093455, 4.35294117641097, 48.6666666666667, 0.352941176473005, 16.0000000001693, 56.7142857147573, 1.81818181818182, 1.37931034481651, 19.6800000001833, 6.63157894732779, 134.999999998428, 41.0434782604541, 26.8749999998045, 3.62499999997362, 16.5652173912624, 10.3448275861238, 1.28654970761285, 2.94736842108875, 13.4285714283481, 7.6, 3.2307692307403, 2, NA, 3.44444444444444, 93.1428571413081, 0.111111111111111, 13.6666666666667, 28.1379310342568, 2.39999999997206, 7.8749999999427, 4.00000000003725, 6.99999999994907, 60, 26.8750000003911, 30.5060240963, 3.12499999997726, 3.17241379307798, 4.83333333333333, 9.29411764712247, 12.7058823530282, 4.24999999987631, 6.99999999994907, 9.97183098578469, 2.39999999997206, 8.93023255818789, 15.3846153848909, 94, 0.111111111111111, 21.4000000004983, 29.9130434779581, 1.24137931033486, NA, 15.8666666666667, 7.17647058828444, 1.49999999998909, 37.9047619047619, 27.6666666666667, 1.74999999998727, 9.37499999993179, 17.3333333333333, 11.603053435032, 5.33333333333333, 2.8, 7.99999999994179, 3.5, 1.60000000003725, 7.31034482752751, 6.42857142846452, 56.7272727278731, 0, 21.6000000005029, 28.8750000004202, 1.6, NA, 4.5, 5.64705882356808, 7.16666666666667, 36.2068965514334, 40.235294117096, 4.8, 22.3043478260305, 8.86956521730152, 3.94936708861923, 3.33333333333333, 12.6000000002934, 20.0000000001663, 1.28571428572498, 0.749999999978172, NA, 6.25000000009095, NA, 0.258064516125156, 18.6666666666667, 17, 5.51724137926605, 2.58823529413537, 11.0769230771215, 5.26315789480134, 11.4999999996653, 34.1250000004966, 42.4, 6.53333333333333, 33.1578947366389, 4.4, 4.9484536082593, 11.2307692309704, 5.11111111111111, 23.8571428573412, 0.4, 2.30769230773364, 6.81818181819986, 8.19999999990454, 26.7272727275556, 0.352941176465754, 24.1999999997183, 7.04000000006557, 2.5, 7.14285714291654, 11.4285714286665, 12.1333333333333, 2.83870967744068, 42.7500000006221, 4.99999999985448, 3.33333333333333, 10.112359550456, 16.8, 4.23841059603303, 2.22222222222222, 14.4615384617975, 15.6923076925887, 3.23076923082709, 1.05882352939726, NA, 7.42857142844789, NA, NA, 16.952380952381, 12.4, 6.29999999992666, 85.4193548393512, 4.33333333333333, 11.8666666666667, 6.0000000000635, 19.6800000001833, NA, 3.46666666666667, NA, 13.0909090909091, 12.6315789471169, 5.14285714289991, 9.14285714285714, 12.1428571429581, 2.87499999997908, 1.692307692338, 10.2499999997017, 5.00000000007276, NA, NA, 19.578947368661, 10.4444444444444, 1.74999999998727, 4.77419354842295, 8.57142857149985, 9.66666666666667, 13.5238095238095, 7.29729729727434, NA, 1.6, 9.18367346930048, 6.85714285719988, 4.5508982036055, 0.666666666666667, 10.90909090886, 2.61538461536119, 6.1818181818836, 1.57142857140244, NA, 1.99999999996674, 24.4285714287746, 0.941176470575345, 16.6, 17.6666666666667, 0.999999999992724, 10.2666666666667, 7.5, 11.2499999999181, 11.9999999998785, 12.8, 29.7333333333333, 5.33333333333333, 13.6, 1.84615384615385, 12.7924528302168, 2.4, 23.6923076920955, 2.42857142859162, 4.90909090914286, 3.62499999997362, 11.4193548385381, 4.92307692303284, 17, NA, 16.9090909090909, 20.8333333333333, 0.96969696969697, 8, 11.8333333333333, 10.2352941175069, 5.81818181805867, 6.07228915660947, 39.3333333333333, 4.13333333333333, 9.6969696969697, 11.2, 7.94297352346302, 2.12499999998454, 4.66666666666667, 2.66666666666667, 11.3333333333333, 3.7037037037037, NA, 2.87500000004184, 24.3999999997159, 1.88888888888889, 10.4444444444444, NA, 3.73333333333333, 7.08571428566715, 15.8333333333333, 11.2499999999181, 2.59999999996973, NA, 43.6, 3.24999999997635, 22.9213483149066, NA, 5.22935779808415, 1.85714285711197, 14.3333333333333, 15.4285714286997, 4.363636363544, 1.8571428571583, 7.36363636365585, 6.37499999995362, 51.3333333333333, 3.42857142854862, 1.043478260859, 4.94736842102232, 2.76923076920597, 5.09090909090909, 2.5, 7.49999999994543, 9.71428571436649, 7.25581395352766, 29.8823529407672, 6.62500000009641, NA, 6.12500000008913, 5.59322033900236, 5.12499999996271, 5.45454545460318, 7.00000000005821, 2.44444444444444, 3.05882352936987, 16.9999999998021, 7.71428571434986, 16.8571428568625, NA, 8.83333333333333, 6.77777777777778, 2.78787878787879, 5.06666666666667, 8.83333333333333, 9.17647058829813, 14.1666666666667, 5.5, 36.6666666666667, 4.23529411767606, 7.48387096779814, 5.33333333333333, 2.73244781783923, 2.13333333333333, 2.5, 11.5, 6.42857142862488, 3, 1.79310344827586, 8.00000000006652, 24.8571428567295, NA, 6.09523809523809, 68.5517241373807, 21.2500000003092, 6.21052631575142, 19.2857142858747, 15.1111111111111, 5.5714285714749, 42.6506024095189, 42.615384615003, 4.87499999996453, 13.3333333333333, 11.8709677420246, 8.83116883122224, 6.31578947364551, 9.83333333333333, 1.99999999996674, 7.69230769223881, 4.39999999994878, 17.3076923070723, 8.13333333333333, 16.461538461391, 1.65517241377981, 7.03999999986887, 10.2857142855432, 2.12500000003092, 1.14285714283814, 1.14285714286665, 13.1764705880548, 3.7826086956426, NA, 28.1333333333333, 3.75000000005457, 8.38709677406756, 6.83870967731663, 3.20610687022758, 6.49999999995271, 6.32432432430443, 13.8666666666667, 8.42857142843125, 2.83333333333333, 13.4210526314967, 3.33333333333333, 14.1538461537194, 0.933333333333333, 15.8333333333333, NA, 8.2962962962963, 5.31818181819589, 13.5714285715414, 10.1249999999263, 6.28571428576655, 39.260869565118, 26.6000000006193, 4.00000000005821, NA, 3.74193548389907, 5.35104364326849, 0.749999999994543, 12.0000000001118, 4.30769230765373, 6.57142857148322, 6.00000000002686, 13.3333333333333, 5.33333333333333, 16.1999999998114, 1.87499999998636, 13.1200000001222, 11.0588235294875, 2.0689655172746, 5.57142857140541, 17.1428571429997, 12.8571428572498, 10.4615384617258, 27.2727272730159, 25.5714285716412, 9.25000000013461, 12.3956043957313, 20.8235294114795, 4.54183266930586, 6.25000000009095, 14.000000000326, 1.33333333333333, 8.13333333333333, 7.15789473666668, NA, 62.6666666666667, 18.0000000003224, 0.117647058821918, 6.66666666666667, 43.8571428575075, 8.55172413806835, 5.40540540543942, 7.71428571434986, 11.0000000001601, 18.2857142858663, 52.6451612895318, 26.4, 5.6, 13.1612903226795, 5.93939393939394, 2.48366013073029, 1.53846153844776, 2.36363636363636, 4.14285714289159, 1.33333333333333, 9.23076923093455, NA, 2.83333333333333, 10.9230769229791, 2.19354838706382, 18.6666666666667, 3.57142857136918, 1.6, 8.50000000012369, 9.85714285722482, 11.2500000001637, 1.74999999994907, 6.367346938715, 33, 10.8749999999209, 23.9999999999393, 23.4838709679183, 3.73205741626378, 2.74999999997999, 20.6666666666667, 4.14814814814815, 13.2857142858248, 4.57142857142857, 15.2432432431953, 5.85714285719156, 10, 2.5882352940822, 20.5000000002983, 58.3749999995753, 1.875, 5.08108108101713, 13.5714285715414, 10.8235294116165, 2.66666666666667, 27.4782608692871, 30.9230769228, 17.6, 7.77272727274784, 15.7500000002292, 2.46753246754739, 2.77777777777778, 12.6428571428046, 3.6, 11.2222222222222, 6.79999999992084, 20.705882353083, 2.85714285716662, 14.1818181819683, 3.51515151515152, 11.7777777777778, 57.8888888888889, 3.9999999999709, 5.58620689660779, 15.4285714286997, 11.3548387097627, 1.00000000000832, 23.9999999999393, 25.3333333333333, 20.1250000002929, 4.88372093023256, 13.1111111111111, 2.57812500003752, 2.66666666666667, 12.0000000002794, 7.74999999994361, 23.2857142859079, 10.3333333333333, NA, 4.74999999996544, 12.545454545189, 1.74999999998727, 8, 55.999999999233, 2.12499999998454, 5.05882352944641, 24.5714285716329, 8.21052631573917, 1.99999999998545, 29.17322834643, 30.5060240963)
par(mfrow = c(2, 2))
hist(nph)
hist(dph)
qqnorm(nph)
qqline(nph)
qqnorm(dph)
qqline(dph)

Estas son las distribuciones:

ingrese la descripción de la imagen aquí

Como los datos obviamente no se distribuyen normalmente, muchas pruebas estadísticas no se pueden aplicar a estos datos. ¿Pero tal vez pueda transformar los datos a una distribución normal?

¿Cómo puedo saber qué distribución es esta?
¿Y cómo puedo transferir los datos a una distribución normal?

El objetivo es hacer un análisis de varianza (MANOVA) o algo por el estilo (los datos presentados aquí son las dos variables dependientes).

Respuestas:


9

Los datos parecen tener una distribución exponencial . Para la transformación, el registro simple parece funcionar bien.

hist(log(dph), freq=FALSE, ylim=c(0, .4))
lines(seq(-6, 6, by=0.01), dnorm(seq(-6, 6, by=0.01), 2, 1), col="red")
qqnorm(log(dph), ylim=c(0, 5))
qqline(log(dph), col="red")

ingrese la descripción de la imagen aquí


Gracias @Tim. ¿Podrías enviarme tu código? La trama QQ se ve diferente cuando lo hago (menos empinada). Además, ¿excluyó el único valor que es -Inf después de la transformación?

1
@what Perdón por eso, en la versión inicial usé algunos extraños xlimy ylimparámetros. Y no, nada fue excluido.
Tim

Buscando instrucciones sobre cómo interpretar los resultados de las pruebas de hipótesis de datos transformados logarítmicamente, me topé con un comentario de Whuber (primero bajo esta pregunta: stats.stackexchange.com/q/20397/14650 ) diciendo que una distribución de Poisson está "naturalmente indicada para contar datos ", y a partir de ahí encontré este artículo explicando por qué: r-bloggers.com/do-not-log-transform-count-data-bitches ¿Qué opinas?

1
A veces, desea o necesita transformar sus variables; ciertamente no es el único enfoque, o no el de las apuestas siempre. Generalmente sí, hay distribuciones que están diseñadas para datos de conteo (por ejemplo, Poisson) o para distribuciones sesgadas (por ejemplo, geométrica, exponencial), pero no siempre es posible usarlas. Por ejemplo, es posible que desee utilizar una variable como variable independiente en la regresión lineal, por lo que no desea que esté sesgada y la transforme. Generalmente depende de la situación.
Tim

1
@ What Sí, estoy de acuerdo en que debe pensar en el proceso que origina sus datos disponibles (~ tipo de variable). Recuerde que la distribución es una ASUNCIÓN que está dispuesto a hacer, que dicta la validez de su modelo y resultados. Piense en un condicional: los resultados son tales y tales IF (o dados) esta suposición (y otras) es cierta. Las pruebas en la muestra real usualmente ayudan a probar en esa suposición, pero no lo hacen VERDADERO o FALSO. Y es por eso que es tan importante asumir algo creíble para su variable :)
FairMiles

14

Cualquier distribución continua puede convertirse en una distribución normal a través de un proceso llamado Gaussianización (Chen y Gopinath, 2001) . Para distribuciones univariadas, la gaussianización es simple. Si una variable aleatoriaY tiene función de distribución acumulativa (CDF) FY y Φ es el CDF de un estándar normal, entonces

X=Φ1(FY(Y))

tendrá una distribución normal estándar. Esto es fácil de ver, ya que el CDF deX es

FX(x)=P(Xx)=P(Φ1(FY(Y))x)=P(YFY1(Φ(x)))=FY(FY1(Φ(x)))=Φ(x).

Si Y se distribuye exponencialmente con tasa λ, entonces los datos podrían transformarse a través de

X=Φ1(1eλY),

que se parece a un logaritmo:

Función de gaussianización

No uso R , pero estoy seguro de que puedes encontrar implementaciones del CDF inverso (también conocido como función cuantil ) de lo normal,Φ1.


3
Me perdiste en "Esto es fácil de ver ..." :-) Entiendo y = 3x, pero no entiendo F(x) = 3x. He tenido esto en la escuela durante años, y lo escucho en la universidad todos los días, pero la "función de x" no tiene sentido para mí. No veo a qué se correlaciona en el mundo en el que vivo y experimento a través de mis sentidos. Por lo tanto, no entiendo lo que está diciendo que podría hacer en "los datos podrían transformarse a través de ...". Pero +1 por tu amabilidad al tratar de ayudarme. No es tu culpa, no puedo pensar de manera abstracta.

-2
  1. ¿Cómo puedo saber qué distribución es esta? Aquí puede usar algunas pruebas estadísticas del paquete R fitdistrplus. En el paquete, encontrará una crateria de adaptación, es decir, AIC, BIC, etc. La adaptación de la distribución 'gamma o mor es la distribución como "normal". Aquí están los métodos.

    • ESTIMACIÓN DE MÁXIMA VEROSIMILITUD
    • ESTIMACIÓN A JUEGO MOMENTO
    • ESTIMACIÓN A JUEGO CUANTIL
    • ESTIMACIÓN MÁXIMA DE BIENESTAR DE FIT (estadísticas de bondad de ajuste y criterios de bondad de ajuste)

Luego, finalmente, encontrará entre varios modelos teóricos el mejor que se asemeja a sus datos observados.

  1. ¿Y cómo puedo transferir los datos a una distribución normal? Aquí puedes usar Box Cox Transfom

    Box_Cox_tran=function(x, lambda, jacobian.adjusted = FALSE) 
    {
      bc1 <- function(x, lambda) 
      {
        if (any(x[!is.na(x)] <= 0)) 
          stop("First argument must be strictly positive.")
        z <- if (abs(lambda) <= 1e-06) 
          log(x)
        else ((x^lambda) - 1)/lambda
        if (jacobian.adjusted == TRUE) {
          z * (exp(mean(log(x), na.rm = TRUE)))^(1 - lambda)
        }
        else z
      }
      out <- x
      out <- if (is.matrix(out) | is.data.frame(out)) {
        if (is.null(colnames(out))) 
          colnames(out) <- paste("Z", 1:dim(out)[2], sep = "")
        for (j in 1:ncol(out)) {
          out[, j] <- bc1(out[, j], lambda[j])
        }
        colnames(out) <- paste(colnames(out), round(lambda, 2), 
                               sep = "^")
        out
      }
      else bc1(out, lambda)
      out
    }
    

Aquí está mi ejemplo de trabajo:

# ---------------------------------------------------------------------------------------------------------------------------
# Objective three starts Here
# (3)= Bivariate modelling of annual maxima using traditional approach 
# a)    First transform onbserved seasonal maxima into normal distribution using Box-Cox Transformations(x to z)
# b)    Finaly, Estimate Pearson coefficient using traditional bivariate normal distribution
# ---------------------------------------------------------------------------------------------------------------------------
rm(list=ls())
Sys.setenv(LANGUAGE="en")  # to set languege from Polish to English
setwd("C:/Users/sdebele/Desktop/From_oldcomp/Old_Computer/Seasonal_APP/Data/Data_Winter&Summer")
# Loading the required package here
library(MASS)
library(geoR)
require(scales)
require(plyr)
require(car)
library(ggplot2)
require(alr3)
library(ggplot2)
library(reshape2)
library(nortest)
require(AID)
require(distr)
require(fBasics)
# -----------------------------------------------------------------------------------------------------------------------------
# Here the Box-Cox Transformations equations
# x(lambda)=x^lamda-1/lambda, if lambda is not zero
# else log(x) if lambda=0
#--------------------------------------------------------------------------------------------------------------------------------
# Here is the data for six guaging stations of dependant ( 51.12% to 89.85%)
filenames=c("ZAPALOW.txt","GORLICZYNA.txt","SARZYNA.txt","OSUCHY.txt","HARASIUKI.txt","RUDJASTKOWSKA.txt")
# ---------------------------------------------------------------------------------------------------------------------------
# (1)= For ZAPALOW hydrological guaging stations starts here
# --------------------------------------------------------------------------------------------------------------------------------
ZAPALOW=read.table(file=filenames[1],head=T,sep="\t")
newZAPALOW <- na.omit(ZAPALOW) # to eliminte the missing value from the data sets 
Years=newZAPALOW$Year
    Winter=newZAPALOW$Winter
Summer=newZAPALOW$Sumer
    source("Box_Cox_Transfom.R") # R_script containing the tranformation equations 
    # estimation of lambda using AID R package 
    # boxcoxnc(Sumer, method="ac", lam=seq(-2,2,0.01), plotit=TRUE, rep=30, p.method="BY")
    # boxcoxnc(Winter, method="ac", lam=seq(-2,2,0.01), plotit=TRUE, rep=30, p.method="BY")
    Trans_Win=boxcoxnc(Winter)
    Trans_Sum=boxcoxnc(Summer)
    Winter_trans=Box_Cox_tran(Winter,Trans_Win$result[1,1],jacobian.adjusted=T)
Summer_trans=Box_Cox_tran(Summer,Trans_Sum$result[1,1],jacobian.adjusted=T)
    newZAPALOW[,4]=Winter_trans
    newZAPALOW[,5]=Summer_trans
    colnames(newZAPALOW)= c("Year","Winter " ,"Summer","Winter_Trans","Summer_Trans")
    par(mfrow=c(2,2))
    par("lwd"=2)
    ## Plot histogram with overlayed normal distribution.
    hist(newZAPALOW[,4],main="",xlab="Discharge",freq=FALSE,col="lightblue")
    curve(dnorm(x,mean=mean(newZAPALOW[,4]),sd=sd(newZAPALOW[,4])), add=TRUE, col="darkred",lwd=2)
    qq.plot(newZAPALOW[,4], dist= "norm", col=palette()[1], ylab="Sample Quantiles",
            main="Normal Probability Plot", pch=19)
    #b <- mydata[,c(2,3)] # select interesting columns
    result <- shapiro.test(newZAPALOW[,4]) # checking for normality test 
    result$p.value
ad.test(newZAPALOW[,4]) # checking for normality test 
## Plot histogram with overlayed normal distribution.
hist(newZAPALOW[,5],main="",xlab="Discharge",freq=FALSE,col="lightblue")
curve(dnorm(x,mean=mean(newZAPALOW[,5]),sd=sd(newZAPALOW[,5])), add=TRUE, col="darkred",lwd=2)
qq.plot(newZAPALOW[,5], dist= "norm", col=palette()[1], ylab="Sample Quantiles",
        main="Normal Probability Plot", pch=19)
result <- shapiro.test(newZAPALOW[,5]) # checking for normality test 
result$p.value
ad.test(newZAPALOW[,5]) # checking for normality test 
write.table(newZAPALOW, "newZAPALOW_trans.txt", sep="\t")
For sure this will be helpfull for you.

Intenta editar tu publicación para que sea más legible. Su código de Box-Cox parece contener errores (los bucles if-else no están cerrados correctamente, etc.), así que corríjalo.
Tim

3
@Tim cuando está dentro de una lista, necesitamos agregar cuatro espacios más al comienzo de cada línea para formatearla como código.
Shadow Wizard es Ear For You
Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.