Varianza de la media muestral de la muestra bootstrap
Deje que sean observaciones distintas (sin vínculos). Deje que denote una muestra de bootstrap (una muestra del CDF empírico) y deje . Busque y .X1,...,XnX1,...,XnX_{1},...,X_{n}X∗1,...,X∗nX1∗,...,Xn∗X_{1}^{*},...,X_{n}^{*}X¯∗n=1n∑ni=1X∗iX¯n∗=1n∑i=1nXi∗\bar{X}_{n}^{*}=\frac{1}{n}\sum_{i=1}^{n}X_{i}^{*}E(X¯∗n)E(X¯n∗)E(\bar{X}_{n}^{*})Var(X¯∗n)Var(X¯n∗)\mathrm{Var}(\bar{X}_{n}^{*}) Lo que tengo hasta ahora es que es cada uno con probabilidad entonces y que da X∗iXi∗X_{i}^{*}X1,...,XnX1,...,XnX_{1},...,X_{n}1n1n\frac{1}{n}E(X∗i)=1nE(X1)+...+1nE(Xn)=nμn=μE(Xi∗)=1nE(X1)+...+1nE(Xn)=nμn=μ E(X_{i}^{*})=\frac{1}{n}E(X_{1})+...+\frac{1}{n}E(X_{n})=\frac{n\mu}{n}=\mu E(X∗2i)=1nE(X21)+...+1nE(X2n)=n(μ2+σ2)n=μ2+σ2,E(Xi∗2)=1nE(X12)+...+1nE(Xn2)=n(μ2+σ2)n=μ2+σ2,E(X_{i}^{*2})=\frac{1}{n}E(X_{1}^{2})+...+\frac{1}{n}E(X_{n}^{2})=\frac{n(\mu^{2}+\sigma^{2})}{n}=\mu^{2}+\sigma^{2}\>, Var(X∗i)=E(X∗2i)−(E(X∗i))2=μ2+σ2−μ2=σ2.Var(Xi∗)=E(Xi∗2)−(E(Xi∗))2=μ2+σ2−μ2=σ2. \mathrm{Var}(X_{i}^{*})=E(X_{i}^{*2})-(E(X_{i}^{*}))^{2}=\mu^{2}+\sigma^{2}-\mu^{2}=\sigma^{2} \>. Entonces, y desde …