Preguntas etiquetadas con cdf

Función de distribución acumulativa. Mientras que el PDF da la densidad de probabilidad de cada valor de una variable aleatoria, el CDF (a menudo denotado ) da la probabilidad de que la variable aleatoria sea menor o igual a un valor especificado. F(x)

1
Referencias: Cola del cdf inverso
Estoy casi seguro de que ya he visto el siguiente resultado en las estadísticas, pero no puedo recordar dónde. Si es una variable aleatoria positiva y entonces cuando , donde es el cdf de .XXXE(X)&lt;∞E(X)&lt;∞\mathbb{E}(X)<\inftyεF−1(1−ε)→0εF−1(1−ε)→0\varepsilon F^{-1}(1-\varepsilon) \to 0ε→0+ε→0+\varepsilon\to 0^+FFFXXX Esto es fácil de ver geométricamente usando la igualdad y considerando …


1
¿Qué modelo de aprendizaje profundo puede clasificar categorías que no son mutuamente excluyentes?
Ejemplos: Tengo una oración en la descripción del trabajo: "Ingeniero senior de Java en el Reino Unido". Quiero usar un modelo de aprendizaje profundo para predecirlo en 2 categorías: English y IT jobs. Si uso el modelo de clasificación tradicional, solo puede predecir 1 etiqueta con softmaxfunción en la última …
9 machine-learning  deep-learning  natural-language  tensorflow  sampling  distance  non-independent  application  regression  machine-learning  logistic  mixed-model  control-group  crossover  r  multivariate-analysis  ecology  procrustes-analysis  vegan  regression  hypothesis-testing  interpretation  chi-squared  bootstrap  r  bioinformatics  bayesian  exponential  beta-distribution  bernoulli-distribution  conjugate-prior  distributions  bayesian  prior  beta-distribution  covariance  naive-bayes  smoothing  laplace-smoothing  distributions  data-visualization  regression  probit  penalized  estimation  unbiased-estimator  fisher-information  unbalanced-classes  bayesian  model-selection  aic  multiple-regression  cross-validation  regression-coefficients  nonlinear-regression  standardization  naive-bayes  trend  machine-learning  clustering  unsupervised-learning  wilcoxon-mann-whitney  z-score  econometrics  generalized-moments  method-of-moments  machine-learning  conv-neural-network  image-processing  ocr  machine-learning  neural-networks  conv-neural-network  tensorflow  r  logistic  scoring-rules  probability  self-study  pdf  cdf  classification  svm  resampling  forecasting  rms  volatility-forecasting  diebold-mariano  neural-networks  prediction-interval  uncertainty 

1
¿Cuál es el CDF de dos muestras de
Estoy tratando de entender cómo obtener los valores para la prueba unilateral de Kolmogorov-Smirnov , y estoy luchando por encontrar CDF para y en el caso de dos muestras. Lo siguiente se cita en algunos lugares como el CDF para en un caso de una muestra:pppD+n1,n2Dn1,n2+D^{+}_{n_{1},n_{2}}D−n1,n2Dn1,n2−D^{-}_{n_{1},n_{2}}D+nDn+D^{+}_{n} p+n(x)=P(D+n≥x|H0)=x∑j=0⌊n(1−x)⌋(nj)(jn+x)j−1(1−x−jn)n−jpn+(x)=P(Dn+≥x|H0)=x∑j=0⌊n(1−x)⌋(nj)(jn+x)j−1(1−x−jn)n−jp^{+}_{n}\left(x\right) = \text{P}\left(D^{+}_{n} \ge …

2
Varianza de la media muestral de la muestra bootstrap
Deje que sean observaciones distintas (sin vínculos). Deje que denote una muestra de bootstrap (una muestra del CDF empírico) y deje . Busque y .X1,...,XnX1,...,XnX_{1},...,X_{n}X∗1,...,X∗nX1∗,...,Xn∗X_{1}^{*},...,X_{n}^{*}X¯∗n=1n∑ni=1X∗iX¯n∗=1n∑i=1nXi∗\bar{X}_{n}^{*}=\frac{1}{n}\sum_{i=1}^{n}X_{i}^{*}E(X¯∗n)E(X¯n∗)E(\bar{X}_{n}^{*})Var(X¯∗n)Var(X¯n∗)\mathrm{Var}(\bar{X}_{n}^{*}) Lo que tengo hasta ahora es que es cada uno con probabilidad entonces y que da X∗iXi∗X_{i}^{*}X1,...,XnX1,...,XnX_{1},...,X_{n}1n1n\frac{1}{n}E(X∗i)=1nE(X1)+...+1nE(Xn)=nμn=μE(Xi∗)=1nE(X1)+...+1nE(Xn)=nμn=μ E(X_{i}^{*})=\frac{1}{n}E(X_{1})+...+\frac{1}{n}E(X_{n})=\frac{n\mu}{n}=\mu E(X∗2i)=1nE(X21)+...+1nE(X2n)=n(μ2+σ2)n=μ2+σ2,E(Xi∗2)=1nE(X12)+...+1nE(Xn2)=n(μ2+σ2)n=μ2+σ2,E(X_{i}^{*2})=\frac{1}{n}E(X_{1}^{2})+...+\frac{1}{n}E(X_{n}^{2})=\frac{n(\mu^{2}+\sigma^{2})}{n}=\mu^{2}+\sigma^{2}\>, Var(X∗i)=E(X∗2i)−(E(X∗i))2=μ2+σ2−μ2=σ2.Var(Xi∗)=E(Xi∗2)−(E(Xi∗))2=μ2+σ2−μ2=σ2. \mathrm{Var}(X_{i}^{*})=E(X_{i}^{*2})-(E(X_{i}^{*}))^{2}=\mu^{2}+\sigma^{2}-\mu^{2}=\sigma^{2} \>. Entonces, y desde …



1
Simular a partir de una mezcla truncada distribución normal
Quiero simular una muestra de una mezcla de distribución normal de manera que p × N(μ1,σ21) + ( 1 - p ) × N(μ2,σ22)p×N(μ1,σ12)+(1−p)×N(μ2,σ22)p\times\mathcal{N}(\mu_1,\sigma_1^2) + (1-p)\times\mathcal{N}(\mu_2,\sigma_2^2) está restringido al intervalo [ 0 , 1 ][0,1][0,1] en vez de RR\mathbb{R}. Esto significa que quiero simular una mezcla truncada de distribuciones normales. …

1
¿Podemos hacer que la distribución de Irwin-Hall sea más general?
Necesito encontrar una clase de distribución simétrica de baja curtosis, que incluya la distribución gaussiana uniforme, triangular y normal. La distribución de Irwin-Hall (suma del uniforme estándar) ofrece esta característica, pero no trata las órdenes enteras . Sin embargo, si simplemente resume de manera independiente, por ejemplo, 2 uniformes estándar …

2
limite de
Me pregunto si mostrar que el límite: donde \ overline {F} = 1-F es la función de distribución de cola, \ overline {F} (x) = 1 − F (x) , donde F es la función de distribución acumulativalimx→∞xF¯¯¯¯(x)=0limx→∞xF¯(x)=0 \lim_{x \to \infty} x\overline{F}(x) =0 F¯¯¯¯=1−FF¯=1−F\overline{F} =1-FF¯¯¯¯(x)=1−F(x)F¯(x)=1−F(x)\overline{F}(x)=1−F(x)FFF Como x→∞x→∞x \to \infty , …


3
Encuentra distribución y transforma a distribución normal
Tengo datos que describen con qué frecuencia tiene lugar un evento durante una hora ("número por hora", nph) y cuánto duran los eventos ("duración en segundos por hora", dph). Estos son los datos originales: nph &lt;- c(2.50000000003638, 3.78947368414551, 1.51456310682008, 5.84686774940732, 4.58823529414907, 5.59999999993481, 5.06666666666667, 11.6470588233699, 1.99999999998209, NA, 4.46153846149851, 18, 1.05882352939726, 9.21739130425452, …
8 normal-distribution  data-transformation  logistic  generalized-linear-model  ridge-regression  t-test  wilcoxon-signed-rank  paired-data  naive-bayes  distributions  logistic  goodness-of-fit  time-series  eviews  ecm  panel-data  reliability  psychometrics  validity  cronbachs-alpha  self-study  random-variable  expected-value  median  regression  self-study  multiple-regression  linear-model  forecasting  prediction-interval  normal-distribution  excel  bayesian  multivariate-analysis  modeling  predictive-models  canonical-correlation  rbm  time-series  machine-learning  neural-networks  fishers-exact  factorisation-theorem  svm  prediction  linear  reinforcement-learning  cdf  probability-inequalities  ecdf  time-series  kalman-filter  state-space-models  dynamic-regression  index-decomposition  sampling  stratification  cluster-sample  survey-sampling  distributions  maximum-likelihood  gamma-distribution 

3
Cómo obtener la función cuantil cuando no se conoce una forma analítica de la distribución
El problema proviene de la página 377-379 de este [0] documento. Dada una distribución continua y una fija , considere:FFFz∈Rz∈Rz\in\mathbb{R} Lz(t)=PF(|z−Z|≤t)Lz(t)=PF(|z−Z|≤t)L_z(t)=P_F(|z-Z|\leq t) y H(z)=L−1z(0.5)=medZ∼F|z−Z|H(z)=Lz−1(0.5)=medZ∼F|z−Z|H(z)=L^{-1}_z(0.5)=\underset{Z\sim F}{\mbox{med}}|z-Z| donde es el inverso continuo correcto. Entonces, para una z fija , esta es la distancia media de todos los Z \ sim F a …



Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.