Preguntas etiquetadas con random-forest

El bosque aleatorio es un método de aprendizaje automático basado en la combinación de los resultados de muchos árboles de decisión.

1
R regresión lineal variable categórica valor "oculto"
Este es solo un ejemplo que he encontrado varias veces, por lo que no tengo ningún dato de muestra. Ejecutar un modelo de regresión lineal en R: a.lm = lm(Y ~ x1 + x2) x1Es una variable continua. x2es categórico y tiene tres valores, por ejemplo, "Bajo", "Medio" y "Alto". …
10 r  regression  categorical-data  regression-coefficients  categorical-encoding  machine-learning  random-forest  anova  spss  r  self-study  bootstrap  monte-carlo  r  multiple-regression  partitioning  neural-networks  normalization  machine-learning  svm  kernel-trick  self-study  survival  cox-model  repeated-measures  survey  likert  correlation  variance  sampling  meta-analysis  anova  independence  sample  assumptions  bayesian  covariance  r  regression  time-series  mathematical-statistics  graphical-model  machine-learning  linear-model  kernel-trick  linear-algebra  self-study  moments  function  correlation  spss  probability  confidence-interval  sampling  mean  population  r  generalized-linear-model  prediction  offset  data-visualization  clustering  sas  cart  binning  sas  logistic  causality  regression  self-study  standard-error  r  distributions  r  regression  time-series  multiple-regression  python  chi-squared  independence  sample  clustering  data-mining  rapidminer  probability  stochastic-processes  clustering  binary-data  dimensionality-reduction  svd  correspondence-analysis  data-visualization  excel  c#  hypothesis-testing  econometrics  survey  rating  composite  regression  least-squares  mcmc  markov-process  kullback-leibler  convergence  predictive-models  r  regression  anova  confidence-interval  survival  cox-model  hazard  normal-distribution  autoregressive  mixed-model  r  mixed-model  sas  hypothesis-testing  mediation  interaction 

2
Bosque aleatorio en datos agrupados
Estoy usando un bosque aleatorio en datos agrupados de alta dimensión (50 variables de entrada numéricas) que tienen una estructura jerárquica. Los datos se recopilaron con 6 repeticiones en 30 posiciones de 70 objetos diferentes, lo que resultó en 12600 puntos de datos, que no son independientes. Parece que el …

2
Investigar las diferencias entre las poblaciones.
Digamos que tenemos una muestra de dos poblaciones: Ay B. Supongamos que estas poblaciones están formadas por individuos y elegimos describirlos en términos de características. Algunas de estas características son categóricas (por ejemplo, ¿conducen al trabajo?) Y otras son numéricas (por ejemplo, su altura). Llamemos a estas características: . Recopilamos …





1
¿Pueden los bosques aleatorios hacerlo mucho mejor que el error de prueba del 2.8% en MNIST?
No he encontrado ninguna literatura sobre la aplicación de bosques aleatorios a MNIST, CIFAR, STL-10, etc., así que pensé en probarlos con el MNIST invariante de permutación. En R , intenté: randomForest(train$x, factor(train$y), test$x, factor(test$y), ntree=500) Esto funcionó durante 2 horas y obtuvo un error de prueba del 2.8%. También …



1
¿Cómo comparar los eventos observados con los esperados?
Supongamos que tengo una muestra de frecuencias de 4 eventos posibles: Event1 - 5 E2 - 1 E3 - 0 E4 - 12 y tengo las probabilidades esperadas de que ocurran mis eventos: p1 - 0.2 p2 - 0.1 p3 - 0.1 p4 - 0.6 Con la suma de las …
9 r  statistical-significance  chi-squared  multivariate-analysis  exponential  joint-distribution  statistical-significance  self-study  standard-deviation  probability  normal-distribution  spss  interpretation  assumptions  cox-model  reporting  cox-model  statistical-significance  reliability  method-comparison  classification  boosting  ensemble  adaboost  confidence-interval  cross-validation  prediction  prediction-interval  regression  machine-learning  svm  regularization  regression  sampling  survey  probit  matlab  feature-selection  information-theory  mutual-information  time-series  forecasting  simulation  classification  boosting  ensemble  adaboost  normal-distribution  multivariate-analysis  covariance  gini  clustering  text-mining  distance-functions  information-retrieval  similarities  regression  logistic  stata  group-differences  r  anova  confidence-interval  repeated-measures  r  logistic  lme4-nlme  inference  fiducial  kalman-filter  classification  discriminant-analysis  linear-algebra  computing  statistical-significance  time-series  panel-data  missing-data  uncertainty  probability  multivariate-analysis  r  classification  spss  k-means  discriminant-analysis  poisson-distribution  average  r  random-forest  importance  probability  conditional-probability  distributions  standard-deviation  time-series  machine-learning  online  forecasting  r  pca  dataset  data-visualization  bayes  distributions  mathematical-statistics  degrees-of-freedom 

2


1
¿Cuáles son las diferencias prácticas y de interpretación entre alternativas y regresión logística?
Una pregunta reciente sobre alternativas a la regresión logística en R arrojó una variedad de respuestas que incluyeron randomForest, gbm, rpart, bayesglm y modelos aditivos generalizados. ¿Cuáles son las diferencias prácticas y de interpretación entre estos métodos y la regresión logística? ¿Qué suposiciones hacen (o no hacen) en relación con …


Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.