Preguntas etiquetadas con poisson-distribution

Una distribución discreta definida en los enteros no negativos que tiene la propiedad de que la media es igual a la varianza.



5
Si no es un Poisson, entonces, ¿qué distribución es esta?
Tengo un conjunto de datos que contiene la cantidad de acciones realizadas por individuos en el transcurso de 7 días. La acción específica no debería ser relevante para esta pregunta. Aquí hay algunas estadísticas descriptivas para el conjunto de datos: RangoMediaDiferenciaNumero de observaciones0 - 77218,22791696Range0−772Mean18.2Variance2791Number of observations696 \begin{array}{|c|c|} \hline \text{Range} …




1
Media y varianza de una distribución de Poisson inflada a cero
¿Alguien puede mostrar cómo el valor esperado y la varianza del Poisson inflado cero, con función de masa de probabilidad f(y)={π+(1−π)e−λ,(1−π)λye−λy!,if y=0if y=1,2....f(y)={π+(1−π)e−λ,if y=0(1−π)λye−λy!,if y=1,2.... f(y) = \begin{cases} \pi+(1-\pi)e^{-\lambda}, & \text{if }y=0 \\ (1-\pi)\frac{\lambda^{y}e^{-\lambda}}{y!}, & \text{if }y=1,2.... \end{cases} donde ππ\pi es la probabilidad de que la observación sea cero por …


1
R / mgcv: ¿Por qué los productos tensoriales te () y ti () producen superficies diferentes?
El mgcvpaquete Rtiene dos funciones para ajustar las interacciones del producto tensorial: te()y ti(). Entiendo la división básica del trabajo entre los dos (ajustar una interacción no lineal versus descomponer esta interacción en efectos principales y una interacción). Lo que no entiendo es por qué te(x1, x2)y ti(x1) + ti(x2) …
11 r  gam  mgcv  conditional-probability  mixed-model  references  bayesian  estimation  conditional-probability  machine-learning  optimization  gradient-descent  r  hypothesis-testing  wilcoxon-mann-whitney  time-series  bayesian  inference  change-point  time-series  anova  repeated-measures  statistical-significance  bayesian  contingency-tables  regression  prediction  quantiles  classification  auc  k-means  scikit-learn  regression  spatial  circular-statistics  t-test  effect-size  cohens-d  r  cross-validation  feature-selection  caret  machine-learning  modeling  python  optimization  frequentist  correlation  sample-size  normalization  group-differences  heteroscedasticity  independence  generalized-least-squares  lme4-nlme  references  mcmc  metropolis-hastings  optimization  r  logistic  feature-selection  separation  clustering  k-means  normal-distribution  gaussian-mixture  kullback-leibler  java  spark-mllib  data-visualization  categorical-data  barplot  hypothesis-testing  statistical-significance  chi-squared  type-i-and-ii-errors  pca  scikit-learn  conditional-expectation  statistical-significance  meta-analysis  intuition  r  time-series  multivariate-analysis  garch  machine-learning  classification  data-mining  missing-data  cart  regression  cross-validation  matrix-decomposition  categorical-data  repeated-measures  chi-squared  assumptions  contingency-tables  prediction  binary-data  trend  test-for-trend  matrix-inverse  anova  categorical-data  regression-coefficients  standard-error  r  distributions  exponential  interarrival-time  copula  log-likelihood  time-series  forecasting  prediction-interval  mean  standard-error  meta-analysis  meta-regression  network-meta-analysis  systematic-review  normal-distribution  multiple-regression  generalized-linear-model  poisson-distribution  poisson-regression  r  sas  cohens-kappa 


2
¿Igual o diferente? El camino bayesiano
Digamos que tengo el siguiente modelo: Poisson ( λ ) ∼ { λ1λ2si t < τsi t ≥ τPoisson(λ)∼{λ1if t<τλ2if t≥τ\text{Poisson}(\lambda) \sim \begin{cases} \lambda_1 & \text{if } t \lt \tau \\ \lambda_2 & \text{if } t \geq \tau \end{cases} Y deduzco los datos posteriores para y muestran a continuación a …




1
¿Por qué Anova () y drop1 () proporcionaron diferentes respuestas para GLMM?
Tengo un GLMM de la forma: lmer(present? ~ factor1 + factor2 + continuous + factor1*continuous + (1 | factor3), family=binomial) Cuando lo uso drop1(model, test="Chi"), obtengo resultados diferentes a los que uso Anova(model, type="III")del paquete del automóvil o summary(model). Estos dos últimos dan las mismas respuestas. Usando un montón de …
10 r  anova  glmm  r  mixed-model  bootstrap  sample-size  cross-validation  roc  auc  sampling  stratification  random-allocation  logistic  stata  interpretation  proportion  r  regression  multiple-regression  linear-model  lm  r  cross-validation  cart  rpart  logistic  generalized-linear-model  econometrics  experiment-design  causality  instrumental-variables  random-allocation  predictive-models  data-mining  estimation  contingency-tables  epidemiology  standard-deviation  mean  ancova  psychology  statistical-significance  cross-validation  synthetic-data  poisson-distribution  negative-binomial  bioinformatics  sequence-analysis  distributions  binomial  classification  k-means  distance  unsupervised-learning  euclidean  correlation  chi-squared  spearman-rho  forecasting  excel  exponential-smoothing  binomial  sample-size  r  change-point  wilcoxon-signed-rank  ranks  clustering  matlab  covariance  covariance-matrix  normal-distribution  simulation  random-generation  bivariate  standardization  confounding  z-statistic  forecasting  arima  minitab  poisson-distribution  negative-binomial  poisson-regression  overdispersion  probability  self-study  markov-process  estimation  maximum-likelihood  classification  pca  group-differences  chi-squared  survival  missing-data  contingency-tables  anova  proportion 

Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.