Preguntas etiquetadas con excel

Microsoft Excel es un programa de hoja de cálculo comercial. Use esta etiqueta para cualquier pregunta sobre el tema que (a) involucre a Excel como parte crítica de la pregunta o respuesta esperada, y (b) no se trata solo de cómo usar Excel.



3
Interpretación del logaritmo transformador predictor y / o respuesta
Me pregunto si hace una diferencia en la interpretación si solo el dependiente, tanto el dependiente como el independiente, o solo las variables independientes se transforman logarítmicamente. Considere el caso de log(DV) = Intercept + B1*IV + Error Puedo interpretar el IV como el porcentaje de aumento, pero ¿cómo cambia …
46 regression  data-transformation  interpretation  regression-coefficients  logarithm  r  dataset  stata  hypothesis-testing  contingency-tables  hypothesis-testing  statistical-significance  standard-deviation  unbiased-estimator  t-distribution  r  functional-data-analysis  maximum-likelihood  bootstrap  regression  change-point  regression  sas  hypothesis-testing  bayesian  randomness  predictive-models  nonparametric  terminology  parametric  correlation  effect-size  loess  mean  pdf  quantile-function  bioinformatics  regression  terminology  r-squared  pdf  maximum  multivariate-analysis  references  data-visualization  r  pca  r  mixed-model  lme4-nlme  distributions  probability  bayesian  prior  anova  chi-squared  binomial  generalized-linear-model  anova  repeated-measures  t-test  post-hoc  clustering  variance  probability  hypothesis-testing  references  binomial  profile-likelihood  self-study  excel  data-transformation  skewness  distributions  statistical-significance  econometrics  spatial  r  regression  anova  spss  linear-model 


1
Calcular la repetibilidad de los efectos de un modelo más antiguo
Acabo de encontrar este artículo , que describe cómo calcular la repetibilidad (también conocida como confiabilidad, también conocida como correlación intraclase) de una medición a través del modelado de efectos mixtos. El código R sería: #fit the model fit = lmer(dv~(1|unit),data=my_data) #obtain the variance estimates vc = VarCorr(fit) residual_var = …
28 mixed-model  reliability  intraclass-correlation  repeatability  spss  factor-analysis  survey  modeling  cross-validation  error  curve-fitting  mediation  correlation  clustering  sampling  machine-learning  probability  classification  metric  r  project-management  optimization  svm  python  dataset  quality-control  checking  clustering  distributions  anova  factor-analysis  exponential  poisson-distribution  generalized-linear-model  deviance  machine-learning  k-nearest-neighbour  r  hypothesis-testing  t-test  r  variance  levenes-test  bayesian  software  bayesian-network  regression  repeated-measures  least-squares  change-scores  variance  chi-squared  variance  nonlinear-regression  regression-coefficients  multiple-comparisons  p-value  r  statistical-significance  excel  sampling  sample  r  distributions  interpretation  goodness-of-fit  normality-assumption  probability  self-study  distributions  references  theory  time-series  clustering  econometrics  binomial  hypothesis-testing  variance  t-test  paired-comparisons  statistical-significance  ab-test  r  references  hypothesis-testing  t-test  normality-assumption  wilcoxon-mann-whitney  central-limit-theorem  t-test  data-visualization  interactive-visualization  goodness-of-fit 



4
¿Cómo se graficarían los resultados del orden de rango subjetivo?
Estoy buscando la forma de visualizar clasificaciones subjetivas, separadas de mis pruebas no paramétricas. Le he pedido a 12 participantes que clasifiquen 8 elementos diferentes de acuerdo con diferentes criterios subjetivos (clasificaciones separadas para cada uno). Para cualquier conjunto individual de clasificaciones, estoy buscando una buena manera de visualizar las …

1
¿Cuál es la intuición detrás de las muestras intercambiables bajo la hipótesis nula?
Las pruebas de permutación (también llamadas prueba de aleatorización, prueba de aleatorización o prueba exacta) son muy útiles y resultan útiles cuando t-testno se cumple el supuesto de distribución normal requerido por ejemplo y cuando se transforman los valores mediante la clasificación de prueba no paramétrica como Mann-Whitney-U-testconduciría a la …
15 hypothesis-testing  permutation-test  exchangeability  r  statistical-significance  loess  data-visualization  normal-distribution  pdf  ggplot2  kernel-smoothing  probability  self-study  expected-value  normal-distribution  prior  correlation  time-series  regression  heteroscedasticity  estimation  estimators  fisher-information  data-visualization  repeated-measures  binary-data  panel-data  mathematical-statistics  coefficient-of-variation  normal-distribution  order-statistics  regression  machine-learning  one-class  probability  estimators  forecasting  prediction  validation  finance  measurement-error  variance  mean  spatial  monte-carlo  data-visualization  boxplot  sampling  uniform  chi-squared  goodness-of-fit  probability  mixture  theory  gaussian-mixture  regression  statistical-significance  p-value  bootstrap  regression  multicollinearity  correlation  r  poisson-distribution  survival  regression  categorical-data  ordinal-data  ordered-logit  regression  interaction  time-series  machine-learning  forecasting  cross-validation  binomial  multiple-comparisons  simulation  false-discovery-rate  r  clustering  frequency  wilcoxon-mann-whitney  wilcoxon-signed-rank  r  svm  t-test  missing-data  excel  r  numerical-integration  r  random-variable  lme4-nlme  mixed-model  weighted-regression  power-law  errors-in-variables  machine-learning  classification  entropy  information-theory  mutual-information 





1
Paquete GBM vs. Caret usando GBM
He estado usando el ajuste del modelo caret, pero luego volví a ejecutar el modelo usando el gbmpaquete. Entiendo que el caretpaquete usa gbmy el resultado debe ser el mismo. Sin embargo, solo una ejecución de prueba rápida usando data(iris)muestra una discrepancia en el modelo de aproximadamente 5% usando RMSE …

2
Fórmula para la autocorrelación en R vs. Excel
Estoy tratando de descubrir cómo R calcula la autocorrelación de lag-k (aparentemente, es la misma fórmula utilizada por Minitab y SAS), para poder compararla con el uso de la función CORREL de Excel aplicada a la serie y su versión k-lag. R y Excel (usando CORREL) dan valores de autocorrelación …
13 r  sas  autocorrelation  excel 

Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.