2
UMVUE de durante el muestreo de la población
Sea una muestra aleatoria de la densidad(X1,X2,…,Xn)(X1,X2,…,Xn)(X_1,X_2,\ldots,X_n)fθ(x)=θxθ−110<x<1,θ>0fθ(x)=θxθ−110<x<1,θ>0f_{\theta}(x)=\theta x^{\theta-1}\mathbf1_{00 Estoy tratando de encontrar el UMVUE de .θ1+θθ1+θ\frac{\theta}{1+\theta} La densidad conjunta de es(X1,…,Xn)(X1,…,Xn)(X_1,\ldots,X_n) fθ(x1,⋯,xn)=θn(∏i=1nxi)θ−110<x1,…,xn<1=exp[(θ−1)∑i=1nlnxi+nlnθ+ln(10<x1,…,xn<1)],θ>0fθ(x1,⋯,xn)=θn(∏i=1nxi)θ−110<x1,…,xn<1=exp[(θ−1)∑i=1nlnxi+nlnθ+ln(10<x1,…,xn<1)],θ>0\begin{align} f_{\theta}(x_1,\cdots,x_n)&=\theta^n\left(\prod_{i=1}^n x_i\right)^{\theta-1}\mathbf1_{00 \end{align} Como la población pdf pertenece a la familia exponencial de un parámetro, esto muestra que una estadística completa suficiente para esfθfθf_{\theta}θθ\thetaT(X1,…,Xn)=∑i=1nlnXiT(X1,…,Xn)=∑i=1nlnXiT(X_1,\ldots,X_n)=\sum_{i=1}^n\ln X_i Dado que , …