Después de algunos comentarios valiosos, pude encontrar la solución:
We have fX(x)=1B(1,K−1)(1−x)K−2 and fY(y)=12KΓ(K)yK−1e−y/2.
Also, we have 0≤x≤1. Thus, if x=zy, we get 0≤zy≤1 which implies that z≤y≤∞.
Hence:
fZ=∫y=+∞y=−∞1|y|fY(y)fX(zy)dy=∫+∞z1B(1,K−1)2KΓ(K)1yyK−1e−y/2(1−z/y)K−2dy=1B(1,K−1)2KΓ(K)∫+∞ze−y/2(y−z)K−2dy=1B(1,K−1)2KΓ(K)[−2K−1e−z/2Γ(K−1,y−z2)]∞z=2K−1B(1,K−1)2KΓ(K)e−z/2Γ(K−1)=12e−z/2
where the last equality holds since
B(1,K−1)=Γ(1)Γ(K−1)Γ(K).
So Z follows an exponential distribution of parameter 12; or equivalently, Z∼χ22.