Preguntas etiquetadas con loess

LOESS (o LOWESS) significa suavizado de diagramas de dispersión ponderado localmente. Es una forma de regresión del kernel local (vecino k más cercano)

3
Interpretación del logaritmo transformador predictor y / o respuesta
Me pregunto si hace una diferencia en la interpretación si solo el dependiente, tanto el dependiente como el independiente, o solo las variables independientes se transforman logarítmicamente. Considere el caso de log(DV) = Intercept + B1*IV + Error Puedo interpretar el IV como el porcentaje de aumento, pero ¿cómo cambia …
46 regression  data-transformation  interpretation  regression-coefficients  logarithm  r  dataset  stata  hypothesis-testing  contingency-tables  hypothesis-testing  statistical-significance  standard-deviation  unbiased-estimator  t-distribution  r  functional-data-analysis  maximum-likelihood  bootstrap  regression  change-point  regression  sas  hypothesis-testing  bayesian  randomness  predictive-models  nonparametric  terminology  parametric  correlation  effect-size  loess  mean  pdf  quantile-function  bioinformatics  regression  terminology  r-squared  pdf  maximum  multivariate-analysis  references  data-visualization  r  pca  r  mixed-model  lme4-nlme  distributions  probability  bayesian  prior  anova  chi-squared  binomial  generalized-linear-model  anova  repeated-measures  t-test  post-hoc  clustering  variance  probability  hypothesis-testing  references  binomial  profile-likelihood  self-study  excel  data-transformation  skewness  distributions  statistical-significance  econometrics  spatial  r  regression  anova  spss  linear-model 

7
¿Cómo decido qué lapso usar en la regresión LOESS en R?
Estoy ejecutando modelos de regresión LOESS en R, y quiero comparar los resultados de 12 modelos diferentes con diferentes tamaños de muestra. Puedo describir los modelos reales con más detalles si me ayuda a responder la pregunta. Aquí están los tamaños de muestra: Fastballs vs RHH 2008-09: 2002 Fastballs vs …
26 r  regression  loess 



4
¿Cómo proyectar un nuevo vector en el espacio PCA?
Después de realizar el análisis de componentes principales (PCA), quiero proyectar un nuevo vector en el espacio PCA (es decir, encontrar sus coordenadas en el sistema de coordenadas PCA). He calculado PCA en lenguaje R usando prcomp. Ahora debería poder multiplicar mi vector por la matriz de rotación PCA. ¿Deben …
21 r  pca  r  variance  heteroscedasticity  misspecification  distributions  time-series  data-visualization  modeling  histogram  kolmogorov-smirnov  negative-binomial  likelihood-ratio  econometrics  panel-data  categorical-data  scales  survey  distributions  pdf  histogram  correlation  algorithms  r  gpu  parallel-computing  approximation  mean  median  references  sample-size  normality-assumption  central-limit-theorem  rule-of-thumb  confidence-interval  estimation  mixed-model  psychometrics  random-effects-model  hypothesis-testing  sample-size  dataset  large-data  regression  standard-deviation  variance  approximation  hypothesis-testing  variance  central-limit-theorem  kernel-trick  kernel-smoothing  error  sampling  hypothesis-testing  normality-assumption  philosophical  confidence-interval  modeling  model-selection  experiment-design  hypothesis-testing  statistical-significance  power  asymptotics  information-retrieval  anova  multiple-comparisons  ancova  classification  clustering  factor-analysis  psychometrics  r  sampling  expectation-maximization  markov-process  r  data-visualization  correlation  regression  statistical-significance  degrees-of-freedom  experiment-design  r  regression  curve-fitting  change-point  loess  machine-learning  classification  self-study  monte-carlo  markov-process  references  mathematical-statistics  data-visualization  python  cart  boosting  regression  classification  robust  cart  survey  binomial  psychometrics  likert  psychology  asymptotics  multinomial 



2
Si los anchos variables del núcleo a menudo son buenos para la regresión del núcleo, ¿por qué generalmente no son buenos para la estimación de la densidad del núcleo?
Esta pregunta es provocada por la discusión en otra parte . Los núcleos variables a menudo se usan en regresión local. Por ejemplo, loess se usa ampliamente y funciona bien como una regresión más suave, y se basa en un núcleo de ancho variable que se adapta a la escasez …

1
¿Cuál es la intuición detrás de las muestras intercambiables bajo la hipótesis nula?
Las pruebas de permutación (también llamadas prueba de aleatorización, prueba de aleatorización o prueba exacta) son muy útiles y resultan útiles cuando t-testno se cumple el supuesto de distribución normal requerido por ejemplo y cuando se transforman los valores mediante la clasificación de prueba no paramétrica como Mann-Whitney-U-testconduciría a la …
15 hypothesis-testing  permutation-test  exchangeability  r  statistical-significance  loess  data-visualization  normal-distribution  pdf  ggplot2  kernel-smoothing  probability  self-study  expected-value  normal-distribution  prior  correlation  time-series  regression  heteroscedasticity  estimation  estimators  fisher-information  data-visualization  repeated-measures  binary-data  panel-data  mathematical-statistics  coefficient-of-variation  normal-distribution  order-statistics  regression  machine-learning  one-class  probability  estimators  forecasting  prediction  validation  finance  measurement-error  variance  mean  spatial  monte-carlo  data-visualization  boxplot  sampling  uniform  chi-squared  goodness-of-fit  probability  mixture  theory  gaussian-mixture  regression  statistical-significance  p-value  bootstrap  regression  multicollinearity  correlation  r  poisson-distribution  survival  regression  categorical-data  ordinal-data  ordered-logit  regression  interaction  time-series  machine-learning  forecasting  cross-validation  binomial  multiple-comparisons  simulation  false-discovery-rate  r  clustering  frequency  wilcoxon-mann-whitney  wilcoxon-signed-rank  r  svm  t-test  missing-data  excel  r  numerical-integration  r  random-variable  lme4-nlme  mixed-model  weighted-regression  power-law  errors-in-variables  machine-learning  classification  entropy  information-theory  mutual-information 

1
¿Cómo obtener un R cuadrado para un ajuste loess?
¿Cómo calcular la estadística R-cuadrado ( ) en R para y / o salida de función? Por ejemplo para estos datos:r2r2r^2loesspredict cars.lo <- loess(dist ~ speed, cars) cars.lp <- predict(cars.lo, data.frame(speed = seq(5, 30, 1)), se = TRUE) cars.lptiene dos matrices fitpara modelo y se.fitpara error estándar.
15 r  r-squared  loess 


1
GAM vs LOESS vs splines
Contexto : Quiero trazar una línea en un diagrama de dispersión que no aparece paramétrico, por lo tanto, estoy usando geom_smooth()en ggploten R. Devuelve automáticamente. geom_smooth: method="auto" and size of largest group is >=1000, so using gam with formula: y ~ s(x, bs = "cs"). Use 'method = x' to …


2
¿Por qué la función stl proporciona una variación estacional significativa con datos aleatorios?
Tracé el siguiente código con la función stl (Descomposición estacional de series de tiempo de Loess): plot(stl(ts(rnorm(144), frequency=12), s.window="periodic")) Muestra una variación estacional significativa con datos aleatorios colocados en el código anterior (función rnorm). Se observa una variación significativa cada vez que se ejecuta, aunque el patrón es diferente. A …

Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.