Preguntas etiquetadas con inference

Sacar conclusiones sobre los parámetros de la población a partir de datos de muestra. Ver https://en.wikipedia.org/wiki/Inference y https://en.wikipedia.org/wiki/Statistical_inference


1
Neg Binomial y el Prior de Jeffreys
Estoy tratando de obtener el previo de Jeffreys para una distribución binomial negativa. No puedo ver dónde me equivoco, así que si alguien pudiera ayudar a señalar eso, sería apreciado. Bien, entonces la situación es la siguiente: debo comparar las distribuciones anteriores obtenidas usando un binomio y un binomio negativo, …


1
R / mgcv: ¿Por qué los productos tensoriales te () y ti () producen superficies diferentes?
El mgcvpaquete Rtiene dos funciones para ajustar las interacciones del producto tensorial: te()y ti(). Entiendo la división básica del trabajo entre los dos (ajustar una interacción no lineal versus descomponer esta interacción en efectos principales y una interacción). Lo que no entiendo es por qué te(x1, x2)y ti(x1) + ti(x2) …
11 r  gam  mgcv  conditional-probability  mixed-model  references  bayesian  estimation  conditional-probability  machine-learning  optimization  gradient-descent  r  hypothesis-testing  wilcoxon-mann-whitney  time-series  bayesian  inference  change-point  time-series  anova  repeated-measures  statistical-significance  bayesian  contingency-tables  regression  prediction  quantiles  classification  auc  k-means  scikit-learn  regression  spatial  circular-statistics  t-test  effect-size  cohens-d  r  cross-validation  feature-selection  caret  machine-learning  modeling  python  optimization  frequentist  correlation  sample-size  normalization  group-differences  heteroscedasticity  independence  generalized-least-squares  lme4-nlme  references  mcmc  metropolis-hastings  optimization  r  logistic  feature-selection  separation  clustering  k-means  normal-distribution  gaussian-mixture  kullback-leibler  java  spark-mllib  data-visualization  categorical-data  barplot  hypothesis-testing  statistical-significance  chi-squared  type-i-and-ii-errors  pca  scikit-learn  conditional-expectation  statistical-significance  meta-analysis  intuition  r  time-series  multivariate-analysis  garch  machine-learning  classification  data-mining  missing-data  cart  regression  cross-validation  matrix-decomposition  categorical-data  repeated-measures  chi-squared  assumptions  contingency-tables  prediction  binary-data  trend  test-for-trend  matrix-inverse  anova  categorical-data  regression-coefficients  standard-error  r  distributions  exponential  interarrival-time  copula  log-likelihood  time-series  forecasting  prediction-interval  mean  standard-error  meta-analysis  meta-regression  network-meta-analysis  systematic-review  normal-distribution  multiple-regression  generalized-linear-model  poisson-distribution  poisson-regression  r  sas  cohens-kappa 

1
¿Cuál es la diferencia entre VAE y la propagación estocástica para modelos generativos profundos?
¿Cuál es la diferencia entre la codificación automática Bayes variacional y la retropropagación estocástica para modelos generativos profundos ? ¿La inferencia en ambos métodos conduce a los mismos resultados? No conozco ninguna comparación explícita entre los dos métodos, a pesar de que ambos grupos de autores se citan entre sí.

1
Sobre la existencia de UMVUE y la elección del estimador de
Let ser una muestra aleatoria extraída de N ( θ , θ 2 ) población donde θ ∈ R .(X1,X2,⋯,Xn)(X1,X2,⋯,Xn)(X_1,X_2,\cdots,X_n)N(θ,θ2)N(θ,θ2)\mathcal N(\theta,\theta^2)θ∈Rθ∈R\theta\in\mathbb R Estoy buscando el UMVUE de .θθ\theta La densidad conjunta de es(X1,X2,⋯,Xn)(X1,X2,⋯,Xn)(X_1,X_2,\cdots,X_n) fθ(x1,x2,⋯,xn)=∏i=1n1θ2π−−√exp[−12θ2(xi−θ)2]=1(θ2π−−√)nexp[−12θ2∑i=1n(xi−θ)2]=1(θ2π−−√)nexp[1θ∑i=1nxi−12θ2∑i=1nx2i−n2]=g(θ,T(x))h(x)∀(x1,⋯,xn)∈Rn,∀θ∈Rfθ(x1,x2,⋯,xn)=∏i=1n1θ2πexp⁡[−12θ2(xi−θ)2]=1(θ2π)nexp⁡[−12θ2∑i=1n(xi−θ)2]=1(θ2π)nexp⁡[1θ∑i=1nxi−12θ2∑i=1nxi2−n2]=g(θ,T(x))h(x)∀(x1,⋯,xn)∈Rn,∀θ∈R\begin{align} f_{\theta}(x_1,x_2,\cdots,x_n)&=\prod_{i=1}^n\frac{1}{\theta\sqrt{2\pi}}\exp\left[-\frac{1}{2\theta^2}(x_i-\theta)^2\right] \\&=\frac{1}{(\theta\sqrt{2\pi})^n}\exp\left[-\frac{1}{2\theta^2}\sum_{i=1}^n(x_i-\theta)^2\right] \\&=\frac{1}{(\theta\sqrt{2\pi})^n}\exp\left[\frac{1}{\theta}\sum_{i=1}^n x_i-\frac{1}{2\theta^2}\sum_{i=1}^nx_i^2-\frac{n}{2}\right] \\&=g(\theta,T(\mathbf x))h(\mathbf x)\qquad\forall\,(x_1,\cdots,x_n)\in\mathbb R^n\,,\forall\,\theta\in\mathbb R \end{align} , donde yh(x)=1.g(θ,T(x))=1(θ2π√)nexp[1θ∑ni=1xi−12θ2∑ni=1x2i−n2]g(θ,T(x))=1(θ2π)nexp⁡[1θ∑i=1nxi−12θ2∑i=1nxi2−n2]g(\theta, T(\mathbf x))=\frac{1}{(\theta\sqrt{2\pi})^n}\exp\left[\frac{1}{\theta}\sum_{i=1}^n x_i-\frac{1}{2\theta^2}\sum_{i=1}^nx_i^2-\frac{n}{2}\right]h(x)=1h(x)=1h(\mathbf …

2
UMVUE de durante el muestreo de la población
Sea una muestra aleatoria de la densidad(X1,X2,…,Xn)(X1,X2,…,Xn)(X_1,X_2,\ldots,X_n)fθ(x)=θxθ−110<x<1,θ>0fθ(x)=θxθ−110<x<1,θ>0f_{\theta}(x)=\theta x^{\theta-1}\mathbf1_{00 Estoy tratando de encontrar el UMVUE de .θ1+θθ1+θ\frac{\theta}{1+\theta} La densidad conjunta de es(X1,…,Xn)(X1,…,Xn)(X_1,\ldots,X_n) fθ(x1,⋯,xn)=θn(∏i=1nxi)θ−110<x1,…,xn<1=exp[(θ−1)∑i=1nlnxi+nlnθ+ln(10<x1,…,xn<1)],θ>0fθ(x1,⋯,xn)=θn(∏i=1nxi)θ−110<x1,…,xn<1=exp⁡[(θ−1)∑i=1nln⁡xi+nln⁡θ+ln⁡(10<x1,…,xn<1)],θ>0\begin{align} f_{\theta}(x_1,\cdots,x_n)&=\theta^n\left(\prod_{i=1}^n x_i\right)^{\theta-1}\mathbf1_{00 \end{align} Como la población pdf pertenece a la familia exponencial de un parámetro, esto muestra que una estadística completa suficiente para esfθfθf_{\theta}θθ\thetaT(X1,…,Xn)=∑i=1nlnXiT(X1,…,Xn)=∑i=1nln⁡XiT(X_1,\ldots,X_n)=\sum_{i=1}^n\ln X_i Dado que , …





3
El concepto de 'probado estadísticamente'
Cuando las noticias hablan de cosas "estadísticamente probadas", ¿están usando correctamente un concepto de estadística bien definido, mal o simplemente usando un oxímoron? Me imagino que una 'prueba estadística' no es realmente algo realizado para probar una hipótesis, ni una prueba matemática, sino más bien una 'prueba estadística'.
10 inference  proof 

4
Implicaciones del debate actual sobre la significación estadística.
En los últimos años, varios académicos han planteado un problema perjudicial de las pruebas de hipótesis científicas, denominado "grado de libertad del investigador", lo que significa que los científicos deben tomar numerosas decisiones durante su análisis que sesgan hacia la búsqueda con un valor p <5%. Estas opciones ambiguas son, …



Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.