Preguntas etiquetadas con uninformative-prior





3
Estimación del parámetro de una distribución uniforme: ¿anterior inadecuado?
Tenemos N muestras, XiXiX_i , de una distribución uniforme [0,θ][0,θ][0,\theta] donde θθ\theta es desconocido. Estima θθ\theta partir de los datos. Entonces, la regla de Bayes ... f(θ|Xi)=f(Xi|θ)f(θ)f(Xi)f(θ|Xi)=f(Xi|θ)f(θ)f(Xi)f(\theta | {X_i}) = \frac{f({X_i}|\theta)f(\theta)}{f({X_i})} y la probabilidad es: f(Xi|θ)=∏Ni=11θf(Xi|θ)=∏i=1N1θf({X_i}|\theta) = \prod_{i=1}^N \frac{1}{\theta} (editar: cuando0≤Xi≤θ0≤Xi≤θ0 \le X_i \le \thetapara todoiii, y 0 de lo …

4
Modelo de historial de eventos en tiempo discreto (supervivencia) en R
Estoy tratando de ajustar un modelo de tiempo discreto en R, pero no estoy seguro de cómo hacerlo. He leído que puede organizar la variable dependiente en diferentes filas, una para cada observación de tiempo, y usar la glmfunción con un enlace logit o cloglog. En este sentido, tengo tres …
10 r  survival  pca  sas  matlab  neural-networks  r  logistic  spatial  spatial-interaction-model  r  time-series  econometrics  var  statistical-significance  t-test  cross-validation  sample-size  r  regression  optimization  least-squares  constrained-regression  nonparametric  ordinal-data  wilcoxon-signed-rank  references  neural-networks  jags  bugs  hierarchical-bayesian  gaussian-mixture  r  regression  svm  predictive-models  libsvm  scikit-learn  probability  self-study  stata  sample-size  spss  wilcoxon-mann-whitney  survey  ordinal-data  likert  group-differences  r  regression  anova  mathematical-statistics  normal-distribution  random-generation  truncation  repeated-measures  variance  variability  distributions  random-generation  uniform  regression  r  generalized-linear-model  goodness-of-fit  data-visualization  r  time-series  arima  autoregressive  confidence-interval  r  time-series  arima  autocorrelation  seasonality  hypothesis-testing  bayesian  frequentist  uninformative-prior  correlation  matlab  cross-correlation 


3
Cómo realizar SVD para imputar valores perdidos, un ejemplo concreto
He leído los excelentes comentarios sobre cómo lidiar con los valores perdidos antes de aplicar SVD, pero me gustaría saber cómo funciona con un ejemplo simple: Movie1 Movie2 Movie3 User1 5 4 User2 2 5 5 User3 3 4 User4 1 5 User5 5 1 5 Dada la matriz anterior, …
8 r  missing-data  data-imputation  svd  sampling  matlab  mcmc  importance-sampling  predictive-models  prediction  algorithms  graphical-model  graph-theory  r  regression  regression-coefficients  r-squared  r  regression  modeling  confounding  residuals  fitting  glmm  zero-inflation  overdispersion  optimization  curve-fitting  regression  time-series  order-statistics  bayesian  prior  uninformative-prior  probability  discrete-data  kolmogorov-smirnov  r  data-visualization  histogram  dimensionality-reduction  classification  clustering  accuracy  semi-supervised  labeling  state-space-models  t-test  biostatistics  paired-comparisons  paired-data  bioinformatics  regression  logistic  multiple-regression  mixed-model  random-effects-model  neural-networks  error-propagation  numerical-integration  time-series  missing-data  data-imputation  probability  self-study  combinatorics  survival  cox-model  statistical-significance  wilcoxon-mann-whitney  hypothesis-testing  distributions  normal-distribution  variance  t-distribution  probability  simulation  random-walk  diffusion  hypothesis-testing  z-test  hypothesis-testing  data-transformation  lognormal  r  regression  agreement-statistics  classification  svm  mixed-model  non-independent  observational-study  goodness-of-fit  residuals  confirmatory-factor  neural-networks  deep-learning 


1
Derivando la densidad posterior para una probabilidad lognormal y el previo de Jeffreys
La función de probabilidad de una distribución lognormal es: F( x ; μ , σ) ∝∏norteyo11σXyoExp( -( lnXyo- μ)22σ2)F(X;μ,σ)∝∏yo1norte1σXyoExp⁡(-(En⁡Xyo-μ)22σ2)f(x; \mu, \sigma) \propto \prod_{i_1}^n \frac{1}{\sigma x_i} \exp \left ( - \frac{(\ln{x_i} - \mu)^2}{2 \sigma^2} \right ) y el Prior de Jeffreys es: p ( μ , σ) ∝1σ2pags(μ,σ)∝1σ2p(\mu,\sigma) \propto \frac{1}{\sigma^2} combinando …

1
Elegir antecedentes no informativos
Estoy trabajando en un modelo que depende de una función parametrizada fea que actúa como una función de calibración en una parte del modelo. Utilizando una configuración bayesiana, necesito obtener antecedentes no informativos para los parámetros que describen mi función. Sé que, idealmente, debería derivar referencias o al menos anteriores …
Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.