Preguntas etiquetadas con assumptions

Se refiere a las condiciones bajo las cuales un procedimiento estadístico produce estimaciones y / o inferencias válidas. Por ejemplo, muchas técnicas estadísticas requieren la suposición de que los datos se muestrean al azar de alguna manera. Los resultados teóricos sobre los estimadores generalmente requieren suposiciones sobre el mecanismo de generación de datos.

1
¿Cómo comparar los eventos observados con los esperados?
Supongamos que tengo una muestra de frecuencias de 4 eventos posibles: Event1 - 5 E2 - 1 E3 - 0 E4 - 12 y tengo las probabilidades esperadas de que ocurran mis eventos: p1 - 0.2 p2 - 0.1 p3 - 0.1 p4 - 0.6 Con la suma de las …
9 r  statistical-significance  chi-squared  multivariate-analysis  exponential  joint-distribution  statistical-significance  self-study  standard-deviation  probability  normal-distribution  spss  interpretation  assumptions  cox-model  reporting  cox-model  statistical-significance  reliability  method-comparison  classification  boosting  ensemble  adaboost  confidence-interval  cross-validation  prediction  prediction-interval  regression  machine-learning  svm  regularization  regression  sampling  survey  probit  matlab  feature-selection  information-theory  mutual-information  time-series  forecasting  simulation  classification  boosting  ensemble  adaboost  normal-distribution  multivariate-analysis  covariance  gini  clustering  text-mining  distance-functions  information-retrieval  similarities  regression  logistic  stata  group-differences  r  anova  confidence-interval  repeated-measures  r  logistic  lme4-nlme  inference  fiducial  kalman-filter  classification  discriminant-analysis  linear-algebra  computing  statistical-significance  time-series  panel-data  missing-data  uncertainty  probability  multivariate-analysis  r  classification  spss  k-means  discriminant-analysis  poisson-distribution  average  r  random-forest  importance  probability  conditional-probability  distributions  standard-deviation  time-series  machine-learning  online  forecasting  r  pca  dataset  data-visualization  bayes  distributions  mathematical-statistics  degrees-of-freedom 










2
No normalidad en residuos
Me refiero a esta publicación que parece cuestionar la importancia de la distribución normal de los residuos, argumentando que esto, junto con la heterocedasticidad, podría evitarse mediante el uso de errores estándar robustos. He considerado varias transformaciones (raíces, registros, etc.) y todo resulta inútil para resolver completamente el problema. Aquí …


1
Sesgo variable omitido en regresión lineal
Tengo una pregunta filosófica con respecto al sesgo variable omitido. Tenemos el modelo de regresión típico (modelo de población) donde provienen las muestras , y luego un montón de condiciones por las cuales las estimaciones de OLS se comportan bastante bien.Y=β0+β1X1+...+βnXn+υ,Y=β0+β1X1+...+βnXn+υ, Y= \beta_0 + \beta_1X_1 + ... + \beta_nX_n + …


Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.