1
Distribución de cuando e son iid con pdf
Estoy trabajando en el siguiente problema: Deje e ser variables aleatorias independientes con densidad común donde . Deje y V = \ max (X, Y) . Encuentra la densidad conjunta de (U, V) y por lo tanto encontrar la pdf de U + V .XXXYYYf(x)=αβ−αxα−110<x<βf(x)=αβ−αxα−110<x<βf(x)=\alpha\beta^{-\alpha}x^{\alpha-1}\mathbf1_{0<x<\beta}α⩾1α⩾1\alpha\geqslant1U=min(X,Y)U=min(X,Y)U=\min(X,Y)V=max(X,Y)V=max(X,Y)V=\max(X,Y)(U,V)(U,V)(U,V)U+VU+VU+V Como U+V=X+YU+V=X+YU+V=X+Y , simplemente puedo …