Preguntas etiquetadas con confidence-interval

Un intervalo de confianza es un intervalo que cubre un parámetro desconocido con confianza. Los intervalos de confianza son un concepto frecuente. A menudo se confunden con intervalos creíbles, que es el análogo bayesiano. (1α)%

3
Intervalo de confianza para la variación dada una observación
Este es un problema de la "VII Olimpiada de Estudiantes de Kolmogorov en Teoría de la Probabilidad": Dada una observación de una distribución con ambos parámetros desconocidos, proporcione un intervalo de confianza para con un nivel de confianza de al menos 99%.XXXNormal(μ,σ2)Normal⁡(μ,σ2)\operatorname{Normal}(\mu,\sigma^2)σ2σ2\sigma^2 Me parece que esto debería ser imposible. Tengo …





2
Cobertura de intervalos de confianza con estimaciones regulares
Supongamos que estoy tratando de estimar una gran cantidad de parámetros a partir de algunos datos de alta dimensión, utilizando algún tipo de estimaciones regularizadas. El regularizador introduce cierto sesgo en las estimaciones, pero aún puede ser una buena compensación porque la reducción en la variación debería compensarlo con creces. …



4
¿Cómo proyectar un nuevo vector en el espacio PCA?
Después de realizar el análisis de componentes principales (PCA), quiero proyectar un nuevo vector en el espacio PCA (es decir, encontrar sus coordenadas en el sistema de coordenadas PCA). He calculado PCA en lenguaje R usando prcomp. Ahora debería poder multiplicar mi vector por la matriz de rotación PCA. ¿Deben …
21 r  pca  r  variance  heteroscedasticity  misspecification  distributions  time-series  data-visualization  modeling  histogram  kolmogorov-smirnov  negative-binomial  likelihood-ratio  econometrics  panel-data  categorical-data  scales  survey  distributions  pdf  histogram  correlation  algorithms  r  gpu  parallel-computing  approximation  mean  median  references  sample-size  normality-assumption  central-limit-theorem  rule-of-thumb  confidence-interval  estimation  mixed-model  psychometrics  random-effects-model  hypothesis-testing  sample-size  dataset  large-data  regression  standard-deviation  variance  approximation  hypothesis-testing  variance  central-limit-theorem  kernel-trick  kernel-smoothing  error  sampling  hypothesis-testing  normality-assumption  philosophical  confidence-interval  modeling  model-selection  experiment-design  hypothesis-testing  statistical-significance  power  asymptotics  information-retrieval  anova  multiple-comparisons  ancova  classification  clustering  factor-analysis  psychometrics  r  sampling  expectation-maximization  markov-process  r  data-visualization  correlation  regression  statistical-significance  degrees-of-freedom  experiment-design  r  regression  curve-fitting  change-point  loess  machine-learning  classification  self-study  monte-carlo  markov-process  references  mathematical-statistics  data-visualization  python  cart  boosting  regression  classification  robust  cart  survey  binomial  psychometrics  likert  psychology  asymptotics  multinomial 

3
Intervalo de confianza de RMSE
He tomado una muestra de puntos de datos de una población. Cada uno de estos puntos tiene un valor verdadero (conocido por la verdad básica) y un valor estimado. Luego calculo el error para cada punto muestreado y luego calculo el RMSE de la muestra.nortenorten ¿Cómo puedo inferir algún tipo …



3
Cómo combinar intervalos de confianza para un componente de varianza de un modelo de efectos mixtos cuando se usa la imputación múltiple
La lógica de la imputación múltiple (MI) es imputar los valores faltantes no una vez sino varias (típicamente M = 5) veces, lo que resulta en M conjuntos de datos completados. Los M conjuntos de datos completados se analizan luego con métodos de datos completos sobre los cuales se combinan …

4
¿Cuáles son los valores correctos para precisión y recuperación en casos extremos?
La precisión se define como: p = true positives / (true positives + false positives) ¿Es cierto que, como true positivesy false positivesenfoque 0, la precisión se aproxima a 1? La misma pregunta para recordar: r = true positives / (true positives + false negatives) Actualmente estoy implementando una prueba …
20 precision-recall  data-visualization  logarithm  references  r  networks  data-visualization  standard-deviation  probability  binomial  negative-binomial  r  categorical-data  aggregation  plyr  survival  python  regression  r  t-test  bayesian  logistic  data-transformation  confidence-interval  t-test  interpretation  distributions  data-visualization  pca  genetics  r  finance  maximum  probability  standard-deviation  probability  r  information-theory  references  computational-statistics  computing  references  engineering-statistics  t-test  hypothesis-testing  independence  definition  r  censoring  negative-binomial  poisson-distribution  variance  mixed-model  correlation  intraclass-correlation  aggregation  interpretation  effect-size  hypothesis-testing  goodness-of-fit  normality-assumption  small-sample  distributions  regression  normality-assumption  t-test  anova  confidence-interval  z-statistic  finance  hypothesis-testing  mean  model-selection  information-geometry  bayesian  frequentist  terminology  type-i-and-ii-errors  cross-validation  smoothing  splines  data-transformation  normality-assumption  variance-stabilizing  r  spss  stata  python  correlation  logistic  logit  link-function  regression  predictor  pca  factor-analysis  r  bayesian  maximum-likelihood  mcmc  conditional-probability  statistical-significance  chi-squared  proportion  estimation  error  shrinkage  application  steins-phenomenon 

2
Trazar intervalos de confianza para las probabilidades predichas a partir de una regresión logística
Ok, tengo una regresión logística y he usado la predict()función para desarrollar una curva de probabilidad basada en mis estimaciones. ## LOGIT MODEL: library(car) mod1 = glm(factor(won) ~ as.numeric(bid), data=mydat, family=binomial(link="logit")) ## PROBABILITY CURVE: all.x <- expand.grid(won=unique(won), bid=unique(bid)) y.hat.new <- predict(mod1, newdata=all.x, type="response") plot(bid<-000:1000,predict(mod1,newdata=data.frame(bid<-c(000:1000)),type="response"), lwd=5, col="blue", type="l") Esto es genial, …

Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.