Preguntas etiquetadas con mixed-model

Los modelos mixtos (también conocidos como multinivel o jerárquicos) son modelos lineales que incluyen efectos fijos y efectos aleatorios. Se utilizan para modelar datos longitudinales o anidados.

2
¿Qué son la estructura R y la estructura G en un glmm?
He estado usando el MCMCglmmpaquete recientemente. Estoy confundido por lo que se refiere en la documentación como estructura R y estructura G. Estos parecen relacionarse con los efectos aleatorios, en particular especificando los parámetros para la distribución previa sobre ellos, pero la discusión en la documentación parece suponer que el …








4
Efecto fijo versus efecto aleatorio cuando se incluyen todas las posibilidades en un modelo de efectos mixtos
En un modelo de efectos mixtos, la recomendación es utilizar un efecto fijo para estimar un parámetro si se incluyen todos los niveles posibles (p. Ej., Hombres y mujeres). Se recomienda además utilizar un efecto aleatorio para tener en cuenta una variable si los niveles incluidos son solo una muestra …

1
¿Cuál es la intuición detrás de las muestras intercambiables bajo la hipótesis nula?
Las pruebas de permutación (también llamadas prueba de aleatorización, prueba de aleatorización o prueba exacta) son muy útiles y resultan útiles cuando t-testno se cumple el supuesto de distribución normal requerido por ejemplo y cuando se transforman los valores mediante la clasificación de prueba no paramétrica como Mann-Whitney-U-testconduciría a la …
15 hypothesis-testing  permutation-test  exchangeability  r  statistical-significance  loess  data-visualization  normal-distribution  pdf  ggplot2  kernel-smoothing  probability  self-study  expected-value  normal-distribution  prior  correlation  time-series  regression  heteroscedasticity  estimation  estimators  fisher-information  data-visualization  repeated-measures  binary-data  panel-data  mathematical-statistics  coefficient-of-variation  normal-distribution  order-statistics  regression  machine-learning  one-class  probability  estimators  forecasting  prediction  validation  finance  measurement-error  variance  mean  spatial  monte-carlo  data-visualization  boxplot  sampling  uniform  chi-squared  goodness-of-fit  probability  mixture  theory  gaussian-mixture  regression  statistical-significance  p-value  bootstrap  regression  multicollinearity  correlation  r  poisson-distribution  survival  regression  categorical-data  ordinal-data  ordered-logit  regression  interaction  time-series  machine-learning  forecasting  cross-validation  binomial  multiple-comparisons  simulation  false-discovery-rate  r  clustering  frequency  wilcoxon-mann-whitney  wilcoxon-signed-rank  r  svm  t-test  missing-data  excel  r  numerical-integration  r  random-variable  lme4-nlme  mixed-model  weighted-regression  power-law  errors-in-variables  machine-learning  classification  entropy  information-theory  mutual-information 

1
Visualizar resultados de modelos mixtos
Uno de los problemas que siempre he tenido con los modelos mixtos es descubrir visualizaciones de datos, del tipo que podría terminar en un papel o póster, una vez que uno tiene los resultados. En este momento, estoy trabajando en un modelo de efectos mixtos de Poisson con una fórmula …





Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.