He estado usando el MCMCglmm
paquete recientemente. Estoy confundido por lo que se refiere en la documentación como estructura R y estructura G. Estos parecen relacionarse con los efectos aleatorios, en particular especificando los parámetros para la distribución previa sobre ellos, pero la discusión en la documentación parece suponer que el lector sabe cuáles son estos términos. Por ejemplo:
lista opcional de especificaciones previas que tienen 3 elementos posibles: R (estructura R) G (estructura G) y B (efectos fijos) ............ Los antecedentes de las estructuras de varianza (R y G ) son listas con las (co) varianzas esperadas (V) y el parámetro de grado de creencia (nu) para el inverso-Wishart
... tomado de aquí .
EDITAR: Tenga en cuenta que he reescrito el resto de la pregunta después de los comentarios de Stephane.
¿Alguien puede arrojar luz sobre lo que son la estructura R y la estructura G, en el contexto de un modelo de componentes de varianza simple donde el predictor lineal es con y
Hice el siguiente ejemplo con algunos datos que vienen con MCMCglmm
> require(MCMCglmm)
> require(lme4)
> data(PlodiaRB)
> prior1 = list(R = list(V = 1, fix=1), G = list(G1 = list(V = 1, nu = 0.002)))
> m1 <- MCMCglmm(Pupated ~1, random = ~FSfamily, family = "categorical",
+ data = PlodiaRB, prior = prior1, verbose = FALSE)
> summary(m1)
G-structure: ~FSfamily
post.mean l-95% CI u-95% CI eff.samp
FSfamily 0.8529 0.2951 1.455 160
R-structure: ~units
post.mean l-95% CI u-95% CI eff.samp
units 1 1 1 0
Location effects: Pupated ~ 1
post.mean l-95% CI u-95% CI eff.samp pMCMC
(Intercept) -1.1630 -1.4558 -0.8119 463.1 <0.001 ***
---
> prior2 = list(R = list(V = 1, nu = 0), G = list(G1 = list(V = 1, nu = 0.002)))
> m2 <- MCMCglmm(Pupated ~1, random = ~FSfamily, family = "categorical",
+ data = PlodiaRB, prior = prior2, verbose = FALSE)
> summary(m2)
G-structure: ~FSfamily
post.mean l-95% CI u-95% CI eff.samp
FSfamily 0.8325 0.3101 1.438 79.25
R-structure: ~units
post.mean l-95% CI u-95% CI eff.samp
units 0.7212 0.04808 2.427 3.125
Location effects: Pupated ~ 1
post.mean l-95% CI u-95% CI eff.samp pMCMC
(Intercept) -1.1042 -1.5191 -0.7078 20.99 <0.001 ***
---
> m2 <- glmer(Pupated ~ 1+ (1|FSfamily), family="binomial",data=PlodiaRB)
> summary(m2)
Generalized linear mixed model fit by the Laplace approximation
Formula: Pupated ~ 1 + (1 | FSfamily)
Data: PlodiaRB
AIC BIC logLik deviance
1020 1029 -508 1016
Random effects:
Groups Name Variance Std.Dev.
FSfamily (Intercept) 0.56023 0.74849
Number of obs: 874, groups: FSfamily, 49
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.9861 0.1344 -7.336 2.2e-13 ***
Entonces, según los comentarios de Stephane, creo que la estructura G es para . Pero los comentarios también dicen que la estructura R es para pero esto no parece aparecer en la salida.lme4
Tenga en cuenta que los resultados lme4/glmer()
son consistentes con ambos ejemplos de MCMC MCMCglmm
.
Entonces, ¿es la estructura R para y por qué no aparece esto en la salida para ?lme4/glmer()
lme4