Preguntas etiquetadas con continuous-data

Una variable aleatoria se llama continua si su conjunto de valores posibles es incontable, y la probabilidad de que tome un valor particular es cero ( para cada número real ). Una variable aleatoria es continua si y solo si su función de distribución de probabilidad acumulativa es una función continua. XP(X=x)=0x



3
Un ejemplo: regresión LASSO usando glmnet para el resultado binario
Estoy empezando a incursionar con el uso de glmnetla LASSO regresión donde mi resultado de interés es dicotómica. He creado un pequeño marco de datos simulados a continuación: age <- c(4, 8, 7, 12, 6, 9, 10, 14, 7) gender <- c(1, 0, 1, 1, 1, 0, 1, 0, 0) …
78 r  self-study  lasso  regression  interpretation  anova  statistical-significance  survey  conditional-probability  independence  naive-bayes  graphical-model  r  time-series  forecasting  arima  r  forecasting  exponential-smoothing  bootstrap  outliers  r  regression  poisson-distribution  zero-inflation  genetic-algorithms  machine-learning  feature-selection  cart  categorical-data  interpretation  descriptive-statistics  variance  multivariate-analysis  covariance-matrix  r  data-visualization  generalized-linear-model  binomial  proportion  pca  matlab  svd  time-series  correlation  spss  arima  chi-squared  curve-fitting  text-mining  zipf  probability  categorical-data  distance  group-differences  bhattacharyya  regression  variance  mean  data-visualization  variance  clustering  r  standard-error  association-measure  somers-d  normal-distribution  integral  numerical-integration  bayesian  clustering  python  pymc  nonparametric-bayes  machine-learning  svm  kernel-trick  hyperparameter  poisson-distribution  mean  continuous-data  univariate  missing-data  dag  python  likelihood  dirichlet-distribution  r  anova  hypothesis-testing  statistical-significance  p-value  rating  data-imputation  censoring  threshold 





4
Predecir con características continuas y categóricas
Algunas técnicas de modelado predictivo están más diseñadas para manejar predictores continuos, mientras que otras son mejores para manejar variables categóricas o discretas. Por supuesto, existen técnicas para transformar un tipo en otro (discretización, variables ficticias, etc.). Sin embargo, ¿existen técnicas de modelado predictivo diseñadas para manejar ambos tipos de …


2
¿Cuándo debemos discretizar / bin variables / características continuas independientes y cuándo no?
¿Cuándo debemos discretizar / bin variables / características independientes y cuándo no? Mis intentos de responder la pregunta: En general, no debemos bin, porque binning perderá información. El binning en realidad aumenta el grado de libertad del modelo, por lo que es posible causar un ajuste excesivo después del binning. …






Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.