Preguntas etiquetadas con mcmc

Markov Chain Monte Carlo (MCMC) se refiere a una clase de métodos para generar muestras a partir de una distribución objetivo mediante la generación de números aleatorios a partir de una cadena Markov cuya distribución estacionaria es la distribución objetivo. Los métodos MCMC se usan típicamente cuando los métodos más directos para la generación de números aleatorios (por ejemplo, el método de inversión) no son factibles. El primer método MCMC fue el algoritmo Metropolis, luego modificado al algoritmo Metropolis-Hastings.

5
Generar valores multivariados aleatorios a partir de datos empíricos.
Estoy trabajando en una función de Monte Carlo para valorar varios activos con rendimientos parcialmente correlacionados. Actualmente, acabo de generar una matriz de covarianza y alimentar la rmvnorm()función en R. (Genera valores aleatorios correlacionados). Sin embargo, al observar las distribuciones de los rendimientos de un activo, normalmente no se distribuye. …
10 mcmc  monte-carlo  pdf 



1
R regresión lineal variable categórica valor "oculto"
Este es solo un ejemplo que he encontrado varias veces, por lo que no tengo ningún dato de muestra. Ejecutar un modelo de regresión lineal en R: a.lm = lm(Y ~ x1 + x2) x1Es una variable continua. x2es categórico y tiene tres valores, por ejemplo, "Bajo", "Medio" y "Alto". …
10 r  regression  categorical-data  regression-coefficients  categorical-encoding  machine-learning  random-forest  anova  spss  r  self-study  bootstrap  monte-carlo  r  multiple-regression  partitioning  neural-networks  normalization  machine-learning  svm  kernel-trick  self-study  survival  cox-model  repeated-measures  survey  likert  correlation  variance  sampling  meta-analysis  anova  independence  sample  assumptions  bayesian  covariance  r  regression  time-series  mathematical-statistics  graphical-model  machine-learning  linear-model  kernel-trick  linear-algebra  self-study  moments  function  correlation  spss  probability  confidence-interval  sampling  mean  population  r  generalized-linear-model  prediction  offset  data-visualization  clustering  sas  cart  binning  sas  logistic  causality  regression  self-study  standard-error  r  distributions  r  regression  time-series  multiple-regression  python  chi-squared  independence  sample  clustering  data-mining  rapidminer  probability  stochastic-processes  clustering  binary-data  dimensionality-reduction  svd  correspondence-analysis  data-visualization  excel  c#  hypothesis-testing  econometrics  survey  rating  composite  regression  least-squares  mcmc  markov-process  kullback-leibler  convergence  predictive-models  r  regression  anova  confidence-interval  survival  cox-model  hazard  normal-distribution  autoregressive  mixed-model  r  mixed-model  sas  hypothesis-testing  mediation  interaction 

4
Dada una cadena 10D MCMC, ¿cómo puedo determinar sus modos posteriores en R?
Pregunta: Con una cadena MCMC de 10 dimensiones, digamos que estoy preparado para entregarle una matriz de los sorteos: 100,000 iteraciones (filas) por 10 parámetros (columnas), ¿cómo puedo identificar los modos posteriores? Me preocupan especialmente los modos múltiples. Antecedentes:Me considero un experto en informática, pero cuando un colega me hizo …



2
¿Cómo muestrear desde una distribución discreta en los enteros no negativos?
Tengo la siguiente distribución discreta, donde son constantes conocidas:α,βα,β\alpha,\beta p ( x ; α , β) = Beta ( α + 1 , β+ x )Beta ( α , β)para x = 0 , 1 , 2 , ...pag(X;α,β)=Beta(α+1,β+X)Beta(α,β)para X=0 0,1,2,... p(x;\alpha,\beta) = \frac{\text{Beta}(\alpha+1, \beta+x)}{\text{Beta}(\alpha,\beta)} \;\;\;\;\text{for } x = 0,1,2,\dots …

1
¿Limitaciones de MCMC / EM? MCMC sobre EM?
Actualmente estoy aprendiendo modelos bayesianos jerárquicos usando JAGS de R, y también pymc usando Python ( "Métodos Bayesianos para Hackers" ). Puedo entender algo de esta publicación : "terminarás con una pila de números que parece" como si "hubieras logrado tomar muestras independientes de la complicada distribución que querías saber". …

2
¿El muestreo basado en la cadena de Markov es el "mejor" para el muestreo de Monte Carlo? ¿Hay esquemas alternativos disponibles?
Markov Chain Monte Carlo es un método basado en cadenas de Markov que nos permite obtener muestras (en un entorno de Monte Carlo) a partir de distribuciones no estándar de las que no podemos extraer muestras directamente. Mi pregunta es por qué la cadena de Markov es "lo último en …


2
Confusión relacionada con el muestreo de Gibbs
Encontré este artículo donde dice que en el muestreo de Gibbs se acepta cada muestra. Estoy un poco confundido. ¿Cómo es que si cada muestra que aceptaba converge a una distribución estacionaria? En general, el algoritmo Metropolis aceptamos como min (1, p (x *) / p (x)) donde x * …

4
(interactuando) MCMC para multimodal posterior
Estoy tratando de muestrear desde un posterior que tiene muchos modos, particularmente lejos de los demás, usando MCMC. Parece que en la mayoría de los casos, solo uno de estos modos contiene el 95% de HP que estoy buscando. Traté de implementar soluciones basadas en simulación templada, pero esto no …

1
Creación de un modelo de Markov de entropía máxima a partir de un clasificador de entropía máxima de múltiples entradas existente
Me intriga el concepto de un Modelo de Markov de máxima entropía (MEMM), y estoy pensando en usarlo para un etiquetador de Parte de discurso (POS). Por el momento, estoy usando un clasificador convencional de máxima entropía (ME) para etiquetar cada palabra individual. Esto utiliza una serie de características, incluidas …


Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.