Preguntas etiquetadas con likert

Clásicamente, una escala Likert se componía de la suma de muchos elementos Likert (calificaciones ordinales de la cantidad de acuerdo con una declaración), donde todos los elementos eran igualmente válidos. Hoy, el término a veces se usa como sinónimo de 'escala de clasificación ordinal' (que puede basarse en solo 1 elemento).



6
¿Es engañosa la "calificación promedio" de Amazon?
Si entiendo correctamente, las clasificaciones de libros en una escala de 1-5 son puntajes Likert. Es decir, un 3 para mí puede no ser necesariamente un 3 para otra persona. Es una escala ordinal de la OMI. Uno realmente no debería promediar escalas ordinales, pero definitivamente puede tomar la moda, …

5
Cómo lidiar con datos jerárquicos / anidados en el aprendizaje automático
Explicaré mi problema con un ejemplo. Suponga que desea predecir el ingreso de un individuo dados algunos atributos: {Edad, Sexo, País, Región, Ciudad}. Tienes un conjunto de datos de entrenamiento como este train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", "M","F","M","F", "F","F","F","M")), Income=c(31,42,71,65, …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 




4
¿Cómo proyectar un nuevo vector en el espacio PCA?
Después de realizar el análisis de componentes principales (PCA), quiero proyectar un nuevo vector en el espacio PCA (es decir, encontrar sus coordenadas en el sistema de coordenadas PCA). He calculado PCA en lenguaje R usando prcomp. Ahora debería poder multiplicar mi vector por la matriz de rotación PCA. ¿Deben …
21 r  pca  r  variance  heteroscedasticity  misspecification  distributions  time-series  data-visualization  modeling  histogram  kolmogorov-smirnov  negative-binomial  likelihood-ratio  econometrics  panel-data  categorical-data  scales  survey  distributions  pdf  histogram  correlation  algorithms  r  gpu  parallel-computing  approximation  mean  median  references  sample-size  normality-assumption  central-limit-theorem  rule-of-thumb  confidence-interval  estimation  mixed-model  psychometrics  random-effects-model  hypothesis-testing  sample-size  dataset  large-data  regression  standard-deviation  variance  approximation  hypothesis-testing  variance  central-limit-theorem  kernel-trick  kernel-smoothing  error  sampling  hypothesis-testing  normality-assumption  philosophical  confidence-interval  modeling  model-selection  experiment-design  hypothesis-testing  statistical-significance  power  asymptotics  information-retrieval  anova  multiple-comparisons  ancova  classification  clustering  factor-analysis  psychometrics  r  sampling  expectation-maximization  markov-process  r  data-visualization  correlation  regression  statistical-significance  degrees-of-freedom  experiment-design  r  regression  curve-fitting  change-point  loess  machine-learning  classification  self-study  monte-carlo  markov-process  references  mathematical-statistics  data-visualization  python  cart  boosting  regression  classification  robust  cart  survey  binomial  psychometrics  likert  psychology  asymptotics  multinomial 


3
Análisis factorial de cuestionarios compuestos por ítems Likert
Solía ​​analizar elementos desde un punto de vista psicométrico. Pero ahora estoy tratando de analizar otro tipo de preguntas sobre motivación y otros temas. Estas preguntas están todas en escalas Likert. Mi pensamiento inicial fue utilizar el análisis factorial, porque las preguntas tienen la hipótesis de reflejar algunas dimensiones subyacentes. …




1
¿Cómo incorporo un valor atípico innovador en la observación 48 en mi modelo ARIMA?
Estoy trabajando en un conjunto de datos. Después de usar algunas técnicas de identificación de modelos, obtuve un modelo ARIMA (0,2,1). Utilicé la detectIOfunción en el paquete TSAen R para detectar un valor atípico innovador (IO) en la observación número 48 de mi conjunto de datos original. ¿Cómo incorporo este …
10 r  time-series  arima  outliers  hypergeometric  fishers-exact  r  time-series  intraclass-correlation  r  logistic  glmm  clogit  mixed-model  spss  repeated-measures  ancova  machine-learning  python  scikit-learn  distributions  data-transformation  stochastic-processes  web  standard-deviation  r  machine-learning  spatial  similarities  spatio-temporal  binomial  sparse  poisson-process  r  regression  nonparametric  r  regression  logistic  simulation  power-analysis  r  svm  random-forest  anova  repeated-measures  manova  regression  statistical-significance  cross-validation  group-differences  model-comparison  r  spatial  model-evaluation  parallel-computing  generalized-least-squares  r  stata  fitting  mixture  hypothesis-testing  categorical-data  hypothesis-testing  anova  statistical-significance  repeated-measures  likert  wilcoxon-mann-whitney  boxplot  statistical-significance  confidence-interval  forecasting  prediction-interval  regression  categorical-data  stata  least-squares  experiment-design  skewness  reliability  cronbachs-alpha  r  regression  splines  maximum-likelihood  modeling  likelihood-ratio  profile-likelihood  nested-models 

1
¿Cómo interpretar este biplot de PCA proveniente de una encuesta de qué áreas están interesadas las personas?
Antecedentes: le pregunté a cientos de participantes en mi encuesta cuánto están interesados ​​en áreas seleccionadas (en escalas Likert de cinco puntos con 1 que indica "no interesado" y 5 que indica "interesado"). Entonces probé PCA. La siguiente imagen es una proyección de los dos primeros componentes principales. Los colores …

Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.