¿Existe una versión continua del teorema de repetición paralela?
El teorema de la pretición paralela de Raz es un resultado importante en PCP, aproximación, etc. El teorema se resume de la siguiente manera. G=(S,T,A,B,π,V)G=(S,T,A,B,π,V)G=(\mathcal{S},\mathcal{T},\mathcal{A},\mathcal{B},\pi, V)S,T,A,BS,T,A,B\mathcal{S},\mathcal{T},\mathcal{A},\mathcal{B}ππ\piS×TS×T\mathcal{S}\times\mathcal{T}V:S×T×A×B→{0,1}V:S×T×A×B→{0,1}V:\mathcal{S}\times\mathcal{T}\times\mathcal{A}\times\mathcal{B}\rightarrow\{0,1\}nv(G)=maxhA∈HA,hB∈HB∑s,tπ(s,t)V(s,t,hA(s),hB(t))v(G)=maxhA∈HA,hB∈HB∑s,tπ(s,t)V(s,t,hA(s),hB(t))v(G)=\max_{h_A\in\mathcal{H}_A,h_B\in\mathcal{H}_B}\sum_{s,t}\pi(s,t)V(s,t,h_A(s),h_B(t))nnnjuego doble . El teorema dice si entonces .v ( G ) ≤ 1 - ϵ , v ( G n ) ≤ ( 1 …