Preguntas etiquetadas con machine-learning

Los algoritmos de aprendizaje automático crean un modelo de los datos de entrenamiento. El término "aprendizaje automático" está vagamente definido; incluye lo que también se llama aprendizaje estadístico, aprendizaje de refuerzo, aprendizaje no supervisado, etc. AGREGUE SIEMPRE UNA ETIQUETA MÁS ESPECÍFICA.

3
¿Por qué KNN no está "basado en modelos"?
El capítulo 2.4 de ESL parece clasificar la regresión lineal como "basada en el modelo", porque supone que , mientras que no se establece una aproximación similar para los vecinos k más cercanos. ¿Pero no están ambos métodos haciendo suposiciones sobre ?f(x)≈x⋅βf(x)≈x⋅βf(x) \approx x\cdot\betaf(x)f(x)f(x) Más adelante en 2.4 incluso dice: …

2
Clasificador para solo una clase
En una clasificación simple, tenemos dos clases: clase-0 y clase-1. En algunos datos solo tengo valores para la clase 1, por lo que ninguno para la clase 0. Ahora estoy pensando en hacer un modelo para modelar los datos para la clase 1. Entonces, cuando llegan nuevos datos, este modelo …





1
R regresión lineal variable categórica valor "oculto"
Este es solo un ejemplo que he encontrado varias veces, por lo que no tengo ningún dato de muestra. Ejecutar un modelo de regresión lineal en R: a.lm = lm(Y ~ x1 + x2) x1Es una variable continua. x2es categórico y tiene tres valores, por ejemplo, "Bajo", "Medio" y "Alto". …
10 r  regression  categorical-data  regression-coefficients  categorical-encoding  machine-learning  random-forest  anova  spss  r  self-study  bootstrap  monte-carlo  r  multiple-regression  partitioning  neural-networks  normalization  machine-learning  svm  kernel-trick  self-study  survival  cox-model  repeated-measures  survey  likert  correlation  variance  sampling  meta-analysis  anova  independence  sample  assumptions  bayesian  covariance  r  regression  time-series  mathematical-statistics  graphical-model  machine-learning  linear-model  kernel-trick  linear-algebra  self-study  moments  function  correlation  spss  probability  confidence-interval  sampling  mean  population  r  generalized-linear-model  prediction  offset  data-visualization  clustering  sas  cart  binning  sas  logistic  causality  regression  self-study  standard-error  r  distributions  r  regression  time-series  multiple-regression  python  chi-squared  independence  sample  clustering  data-mining  rapidminer  probability  stochastic-processes  clustering  binary-data  dimensionality-reduction  svd  correspondence-analysis  data-visualization  excel  c#  hypothesis-testing  econometrics  survey  rating  composite  regression  least-squares  mcmc  markov-process  kullback-leibler  convergence  predictive-models  r  regression  anova  confidence-interval  survival  cox-model  hazard  normal-distribution  autoregressive  mixed-model  r  mixed-model  sas  hypothesis-testing  mediation  interaction 

1
Ayuda a entender kNN para datos multidimensionales
Entiendo la premisa del algoritmo kNN para datos espaciales. Y sé que puedo extender ese algoritmo para usarlo en cualquier variable de datos continua (o datos nominales con Hamming Distance). Sin embargo, ¿qué estrategias se utilizan cuando se trata con datos de dimensiones superiores? Por ejemplo, supongamos que tengo una …








Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.