Preguntas etiquetadas con regularization

Inclusión de restricciones adicionales (generalmente una penalización por complejidad) en el proceso de ajuste del modelo. Se utiliza para evitar el sobreajuste / mejorar la precisión predictiva.

1
¿Pueden los grados de libertad ser un número no entero?
Cuando uso GAM, me da un DF residual de 26.626.626.6 (última línea en el código). Qué significa eso? Yendo más allá del ejemplo de GAM, en general, ¿puede el número de grados de libertad ser un número no entero? > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call: gam(formula = mpg ~ lo(wt), data …
27 r  degrees-of-freedom  gam  machine-learning  pca  lasso  probability  self-study  bootstrap  expected-value  regression  machine-learning  linear-model  probability  simulation  random-generation  machine-learning  distributions  svm  libsvm  classification  pca  multivariate-analysis  feature-selection  archaeology  r  regression  dataset  simulation  r  regression  time-series  forecasting  predictive-models  r  mean  sem  lavaan  machine-learning  regularization  regression  conv-neural-network  convolution  classification  deep-learning  conv-neural-network  regression  categorical-data  econometrics  r  confirmatory-factor  scale-invariance  self-study  unbiased-estimator  mse  regression  residuals  sampling  random-variable  sample  probability  random-variable  convergence  r  survival  weibull  references  autocorrelation  hypothesis-testing  distributions  correlation  regression  statistical-significance  regression-coefficients  univariate  categorical-data  chi-squared  regression  machine-learning  multiple-regression  categorical-data  linear-model  pca  factor-analysis  factor-rotation  classification  scikit-learn  logistic  p-value  regression  panel-data  multilevel-analysis  variance  bootstrap  bias  probability  r  distributions  interquartile  time-series  hypothesis-testing  normal-distribution  normality-assumption  kurtosis  arima  panel-data  stata  clustered-standard-errors  machine-learning  optimization  lasso  multivariate-analysis  ancova  machine-learning  cross-validation 



6
¿Por qué los pesos más pequeños resultan en modelos más simples en la regularización?
Completé el curso de Aprendizaje automático de Andrew Ng hace aproximadamente un año, y ahora estoy escribiendo mi exploración de matemáticas en la escuela secundaria sobre el funcionamiento de la regresión logística y las técnicas para optimizar el rendimiento. Una de estas técnicas es, por supuesto, la regularización. El objetivo …



5
¿Cómo pueden los principales componentes principales retener el poder predictivo en una variable dependiente (o incluso conducir a mejores predicciones)?
Supongamos que yo estoy corriendo una regresión . ¿Por qué al seleccionar los principales componentes principales de , el modelo conserva su poder predictivo en ?Y∼XY∼XY \sim XkkkXXXYYY Entiendo que desde el punto de vista de reducción de dimensionalidad / selección de características, si son los vectores propios de la …

3
Interpretación de la regularización de crestas en regresión
Tengo varias preguntas sobre la penalización de cresta en el contexto de mínimos cuadrados: βridge=(λID+X′X)−1X′yβridge=(λID+X′X)−1X′y\beta_{ridge} = (\lambda I_D + X'X)^{-1}X'y 1) La expresión sugiere que la matriz de covarianza de X se reduce hacia una matriz diagonal, lo que significa que (suponiendo que las variables estén estandarizadas antes del procedimiento) …



2
¿Por qué lambda "dentro de un error estándar del mínimo" es un valor recomendado para lambda en una regresión neta elástica?
Entiendo qué papel juega lambda en una regresión de red elástica. Y puedo entender por qué uno seleccionaría lambda.min, el valor de lambda que minimiza el error de validación cruzada. Mi pregunta es ¿En qué parte de la literatura estadística se recomienda usar lambda.1se, que es el valor de lambda …





Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.