¿Por qué Lars y Glmnet ofrecen diferentes soluciones para el problema de Lasso?


22

Quiero comprender mejor los paquetes R Larsy Glmnet, que se utilizan para resolver el problema de Lasso: (para Variables y muestras, ver www.stanford.edu/~hastie/Papers/glmnet.pdf en la página 3)

metroyonorte(β0 0β)Rpags+1[12norteyo=1norte(yyo-β0 0-XyoTβ)2+λEl |El |βEl |El |l1]
pagsnorte

Por lo tanto, los apliqué a ambos en el mismo conjunto de datos de juguetes. Desafortunadamente, los dos métodos no dan las mismas soluciones para la misma entrada de datos. ¿Alguien tiene una idea de dónde viene la diferencia?

Obtuve los resultados de la siguiente manera: después de generar algunos datos (8 muestras, 12 características, diseño de Toeplitz, todo centrado), calculé todo el camino de Lazo usando Lars. Luego, ejecuté Glmnet usando la secuencia de lambdas calculada por Lars (multiplicada por 0.5) y esperaba obtener la misma solución, pero no lo hice.

Se puede ver que las soluciones son similares. Pero, ¿cómo puedo explicar las diferencias? Por favor encuentre mi código a continuación. Aquí hay una pregunta relacionada: ¿ GLMNET o LARS para calcular las soluciones LASSO? , pero no contiene la respuesta a mi pregunta.

Preparar:

# Load packages.
library(lars)
library(glmnet)
library(MASS)

# Set parameters.
nb.features <- 12
nb.samples <- 8
nb.relevant.indices <- 3
snr <- 1
nb.lambdas <- 10

# Create data, not really important. 
sigma <- matrix(0, nb.features, nb.features)
for (i in (1:nb.features)) {
  for (j in (1:nb.features)) {
    sigma[i, j] <- 0.99 ^ (abs(i - j))
  }
}

x <- mvrnorm(n=nb.samples, rep(0, nb.features), sigma, tol=1e-6, empirical=FALSE)
relevant.indices <- sample(1:nb.features, nb.relevant.indices, replace=FALSE)
x <- scale(x)
beta <- rep(0, times=nb.features)
beta[relevant.indices] <- runif(nb.relevant.indices, 0, 1)
epsilon <- matrix(rnorm(nb.samples),nb.samples, 1)
simulated.snr <-(norm(x %*% beta, type="F")) / (norm(epsilon, type="F"))
epsilon <- epsilon * (simulated.snr / snr)
y <- x %*% beta + epsilon
y <- scale(y)

lars:

la <- lars(x, y, intercept=TRUE, max.steps=1000, use.Gram=FALSE)
co.lars <- as.matrix(coef(la, mode="lambda"))
print(round(co.lars, 4))

#          [,1] [,2] [,3]   [,4]   [,5]   [,6]    [,7]   [,8]    [,9]   [,10]
#  [1,]  0.0000    0    0 0.0000 0.0000 0.0000  0.0000 0.0000  0.0000  0.0000
#  [2,]  0.0000    0    0 0.0000 0.0000 0.1735  0.0000 0.0000  0.0000  0.0000
#  [3,]  0.0000    0    0 0.2503 0.0000 0.4238  0.0000 0.0000  0.0000  0.0000
#  [4,]  0.0000    0    0 0.1383 0.0000 0.7578  0.0000 0.0000  0.0000  0.0000
#  [5,] -0.1175    0    0 0.2532 0.0000 0.8506  0.0000 0.0000  0.0000  0.0000
#  [6,] -0.3502    0    0 0.2676 0.3068 0.9935  0.0000 0.0000  0.0000  0.0000
#  [7,] -0.4579    0    0 0.6270 0.0000 0.9436  0.0000 0.0000  0.0000  0.0000
#  [8,] -0.7848    0    0 0.9970 0.0000 0.9856  0.0000 0.0000  0.0000  0.0000
#  [9,] -0.3175    0    0 0.0000 0.0000 3.4488  0.0000 0.0000 -2.1714  0.0000
# [10,] -0.4842    0    0 0.0000 0.0000 4.7731  0.0000 0.0000 -3.4102  0.0000
# [11,] -0.4685    0    0 0.0000 0.0000 4.7958  0.0000 0.1191 -3.6243  0.0000
# [12,] -0.4364    0    0 0.0000 0.0000 5.0424  0.0000 0.3007 -4.0694 -0.4903
# [13,] -0.4373    0    0 0.0000 0.0000 5.0535  0.0000 0.3213 -4.1012 -0.4996
# [14,] -0.4525    0    0 0.0000 0.0000 5.6876 -1.5467 1.5095 -4.7207  0.0000
# [15,] -0.4593    0    0 0.0000 0.0000 5.7355 -1.6242 1.5684 -4.7440  0.0000
# [16,] -0.4490    0    0 0.0000 0.0000 5.8601 -1.8485 1.7767 -4.9291  0.0000
#         [,11]  [,12]
#  [1,]  0.0000 0.0000
#  [2,]  0.0000 0.0000
#  [3,]  0.0000 0.0000
#  [4,] -0.2279 0.0000
#  [5,] -0.3266 0.0000
#  [6,] -0.5791 0.0000
#  [7,] -0.6724 0.2001
#  [8,] -1.0207 0.4462
#  [9,] -0.4912 0.1635
# [10,] -0.5562 0.2958
# [11,] -0.5267 0.3274
# [12,]  0.0000 0.2858
# [13,]  0.0000 0.2964
# [14,]  0.0000 0.1570
# [15,]  0.0000 0.1571

glmnet con lambda = (lambda_lars / 2):

glm2 <- glmnet(x, y, family="gaussian", lambda=(0.5 * la$lambda), thresh=1e-16)
co.glm2 <- as.matrix(t(coef(glm2, mode="lambda")))
print(round(co.glm2, 4))

#     (Intercept)      V1 V2 V3     V4     V5     V6      V7     V8      V9
# s0            0  0.0000  0  0 0.0000 0.0000 0.0000  0.0000 0.0000  0.0000
# s1            0  0.0000  0  0 0.0000 0.0000 0.0000  0.0000 0.0000  0.0000
# s2            0  0.0000  0  0 0.2385 0.0000 0.4120  0.0000 0.0000  0.0000
# s3            0  0.0000  0  0 0.2441 0.0000 0.4176  0.0000 0.0000  0.0000
# s4            0  0.0000  0  0 0.2466 0.0000 0.4200  0.0000 0.0000  0.0000
# s5            0  0.0000  0  0 0.2275 0.0000 0.4919  0.0000 0.0000  0.0000
# s6            0  0.0000  0  0 0.1868 0.0000 0.6132  0.0000 0.0000  0.0000
# s7            0 -0.2651  0  0 0.2623 0.1946 0.9413  0.0000 0.0000  0.0000
# s8            0 -0.6609  0  0 0.7328 0.0000 1.6384  0.0000 0.0000 -0.5755
# s9            0 -0.4633  0  0 0.0000 0.0000 4.6069  0.0000 0.0000 -3.2547
# s10           0 -0.4819  0  0 0.0000 0.0000 4.7546  0.0000 0.0000 -3.3929
# s11           0 -0.4767  0  0 0.0000 0.0000 4.7839  0.0000 0.0567 -3.5122
# s12           0 -0.4715  0  0 0.0000 0.0000 4.7915  0.0000 0.0965 -3.5836
# s13           0 -0.4510  0  0 0.0000 0.0000 5.6237 -1.3909 1.3898 -4.6583
# s14           0 -0.4552  0  0 0.0000 0.0000 5.7064 -1.5771 1.5326 -4.7298
#         V10     V11    V12
# s0   0.0000  0.0000 0.0000
# s1   0.0000  0.0000 0.0000
# s2   0.0000  0.0000 0.0000
# s3   0.0000  0.0000 0.0000
# s4   0.0000  0.0000 0.0000
# s5   0.0000 -0.0464 0.0000
# s6   0.0000 -0.1293 0.0000
# s7   0.0000 -0.4868 0.0000
# s8   0.0000 -0.8803 0.3712
# s9   0.0000 -0.5481 0.2792
# s10  0.0000 -0.5553 0.2939
# s11  0.0000 -0.5422 0.3108
# s12  0.0000 -0.5323 0.3214
# s13 -0.0503  0.0000 0.1711
# s14  0.0000  0.0000 0.1571

Respuestas:


20

12norte12

Para reproducir eso y ver que se pueden calcular las mismas soluciones para el problema del lazo usando lars y glmnet, se deben cambiar las siguientes líneas en el código anterior:

la <- lars(X,Y,intercept=TRUE, max.steps=1000, use.Gram=FALSE)

a

la <- lars(X,Y,intercept=TRUE, normalize=FALSE, max.steps=1000, use.Gram=FALSE)

y

glm2 <- glmnet(X,Y,family="gaussian",lambda=0.5*la$lambda,thresh=1e-16)

a

glm2 <- glmnet(X,Y,family="gaussian",lambda=1/nbSamples*la$lambda,standardize=FALSE,thresh=1e-16)

1
Me alegra que hayas descubierto esto. ¿Alguna idea sobre qué método de normalización tiene más sentido? En realidad, obtuve peores resultados con la normalización en glmnet (para lazo) y todavía no estoy seguro de por qué.
Ben Ogorek

De hecho, normalizo los datos de forma espontánea y aplico estos métodos y comparo si son similares. Las variables con efectos más pequeños generalmente tienen coeficientes diferentes
KarthikS,

0

Obviamente, si los métodos usan diferentes modelos, obtendrás diferentes respuestas. Restar los términos de intersección no conduce al modelo sin la intersección porque los coeficientes de mejor ajuste cambiarán y usted no los cambia de la forma en que se aproxima. Debe ajustar el mismo modelo con ambos métodos si desea las mismas respuestas o casi las mismas.


1
Sí, tienes razón, los métodos usan modelos ligeramente diferentes, no estaba al tanto de eso. Gracias por la pista. (Explicaré las diferencias más detalladamente en una respuesta por separado)
Andre

-2

Los resultados tienen que ser los mismos. el paquete lars usa por defecto type = "lar", cambia este valor a type = "lasso". Simplemente baje el parámetro 'thresh = 1e-16' para glmnet ya que el descenso de coordenadas se basa en la convergencia.


2
Gracias por su respuesta. Tal vez lo estoy interpretando mal, pero parece estar en desacuerdo con la resolución publicada en la respuesta de Andre hace seis años. Considere elaborar su publicación para incluir una explicación más completa de lo que está tratando de decir y mostrar por qué debemos creer que es correcto y el otro no.
whuber
Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.