Preguntas etiquetadas con bic

BIC es un acrónimo de Criterio de información bayesiano. BIC es un método de comparación de modelos. Ver también AIC



5
Pautas de AIC en la selección del modelo
Normalmente uso BIC porque entiendo que valora más la parsimonia que AIC. Sin embargo, he decidido utilizar un enfoque más completo ahora y me gustaría utilizar AIC también. Sé que Raftery (1995) presentó buenas pautas para las diferencias BIC: 0-2 es débil, 2-4 es evidencia positiva de que un modelo …


5
Cómo lidiar con datos jerárquicos / anidados en el aprendizaje automático
Explicaré mi problema con un ejemplo. Suponga que desea predecir el ingreso de un individuo dados algunos atributos: {Edad, Sexo, País, Región, Ciudad}. Tienes un conjunto de datos de entrenamiento como este train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", "M","F","M","F", "F","F","F","M")), Income=c(31,42,71,65, …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 


3
Interpretación de números AIC y BIC
Estoy buscando ejemplos de cómo interpretar las estimaciones de AIC (criterio de información de Akaike) y BIC (criterio de información bayesiano). ¿Se puede interpretar la diferencia negativa entre BIC como las probabilidades posteriores de un modelo sobre el otro? ¿Cómo puedo poner esto en palabras? Por ejemplo, el BIC = …


1
¿BIC intenta encontrar un modelo verdadero?
Esta pregunta es un seguimiento o intento de aclarar la posible confusión con respecto a un tema que yo y muchos otros encontramos un poco difícil, con respecto a la diferencia entre AIC y BIC. En una muy buena respuesta de @Dave Kellen sobre este tema ( /stats//a/767/30589 ) leemos: …



1
¿Qué método de comparación múltiple usar para un modelo lmer: lsmeans o glht?
Estoy analizando un conjunto de datos utilizando un modelo de efectos mixtos con un efecto fijo (condición) y dos efectos aleatorios (participante debido al diseño del sujeto y al par). El modelo se ha generado con el lme4paquete: exp.model<-lmer(outcome~condition+(1|participant)+(1|pair),data=exp). A continuación, realicé una prueba de razón de probabilidad de este …



2
Usando BIC para estimar el número de k en KMEANS
Actualmente estoy tratando de calcular el BIC para mi conjunto de datos de juguete (ofc iris (:). Quiero reproducir los resultados como se muestra aquí (Fig. 5). Ese documento también es mi fuente para las fórmulas de BIC. Tengo 2 problemas con esto: Notación: ninin_i = número de elementos en …

Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.