Preguntas etiquetadas con penalized

3
LASSO con términos de interacción: ¿está bien si los efectos principales se reducen a cero?
La regresión de LASSO reduce los coeficientes hacia cero, proporcionando así una selección de modelo efectiva. Creo que en mis datos hay interacciones significativas entre covariables nominales y continuas. No necesariamente, sin embargo, son los 'efectos principales' del verdadero modelo significativo (distinto de cero). Por supuesto, no sé esto ya …

2
KKT versus formulación sin restricciones de regresión de lazo
La regresión penalizada L1 (también conocida como lazo) se presenta en dos formulaciones. Deje que las dos funciones objetivas sean Q1=12||Y−Xβ||22Q2=12||Y−Xβ||22+λ||β||1.Q1=12||Y−Xβ||22Q2=12||Y−Xβ||22+λ||β||1. Q_1 = \frac{1}{2}||Y - X\beta||_2^2 \\ Q_2 =\frac{1}{2}||Y - X\beta||_2^2 + \lambda ||\beta||_1. Entonces las dos formulaciones diferentes son argminβQ1argminβQ1 \text{argmin}_\beta \; Q_1 sujeto a ||β||1≤t,||β||1≤t, ||\beta||_1 \leq t, …





2
Si la contracción se aplica de manera inteligente, ¿siempre funciona mejor para estimadores más eficientes?
Supongamos que tengo dos estimadores y que son estimadores consistentes del mismo parámetro y tal que con en el sentido psd. Por lo tanto, asintóticamente es más eficiente que . Estos dos estimadores se basan en diferentes funciones de pérdida.βˆ1β^1\widehat{\beta}_1βˆ2β^2\widehat{\beta}_2β0β0\beta_0n−−√(βˆ1−β0)→dN(0,V1),n−−√(βˆ2−β0)→dN(0,V2)n(β^1−β0)→dN(0,V1),n(β^2−β0)→dN(0,V2)\sqrt{n}(\widehat{\beta}_1 -\beta_0) \stackrel{d}\rightarrow \mathcal{N}(0, V_1), \quad \sqrt{n}(\widehat{\beta}_2 -\beta_0) \stackrel{d}\rightarrow \mathcal{N}(0, V_2)V1≤V2V1≤V2V_1 …


1
¿Qué modelo de aprendizaje profundo puede clasificar categorías que no son mutuamente excluyentes?
Ejemplos: Tengo una oración en la descripción del trabajo: "Ingeniero senior de Java en el Reino Unido". Quiero usar un modelo de aprendizaje profundo para predecirlo en 2 categorías: English y IT jobs. Si uso el modelo de clasificación tradicional, solo puede predecir 1 etiqueta con softmaxfunción en la última …
9 machine-learning  deep-learning  natural-language  tensorflow  sampling  distance  non-independent  application  regression  machine-learning  logistic  mixed-model  control-group  crossover  r  multivariate-analysis  ecology  procrustes-analysis  vegan  regression  hypothesis-testing  interpretation  chi-squared  bootstrap  r  bioinformatics  bayesian  exponential  beta-distribution  bernoulli-distribution  conjugate-prior  distributions  bayesian  prior  beta-distribution  covariance  naive-bayes  smoothing  laplace-smoothing  distributions  data-visualization  regression  probit  penalized  estimation  unbiased-estimator  fisher-information  unbalanced-classes  bayesian  model-selection  aic  multiple-regression  cross-validation  regression-coefficients  nonlinear-regression  standardization  naive-bayes  trend  machine-learning  clustering  unsupervised-learning  wilcoxon-mann-whitney  z-score  econometrics  generalized-moments  method-of-moments  machine-learning  conv-neural-network  image-processing  ocr  machine-learning  neural-networks  conv-neural-network  tensorflow  r  logistic  scoring-rules  probability  self-study  pdf  cdf  classification  svm  resampling  forecasting  rms  volatility-forecasting  diebold-mariano  neural-networks  prediction-interval  uncertainty 

Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.