Preguntas etiquetadas con classification

La clasificación estadística es el problema de identificar la subpoblación a la que pertenecen las nuevas observaciones, donde se desconoce la identidad de la subpoblación, sobre la base de un conjunto de entrenamiento de datos que contienen observaciones cuya subpoblación es conocida. Por lo tanto, estas clasificaciones mostrarán un comportamiento variable que puede ser estudiado por las estadísticas.

3
Clasificación / evaluación de métricas para datos altamente desequilibrados
Trato con un problema de detección de fraude (similar a la calificación crediticia). Como tal, existe una relación altamente desequilibrada entre las observaciones fraudulentas y no fraudulentas. http://blog.revolutionanalytics.com/2016/03/com_class_eval_metrics_r.html proporciona una excelente visión general de las diferentes métricas de clasificación. Precision and Recallo kappaambos parecen ser una buena opción: Una forma …


4
¿Cuándo son aplicables los resultados de Shao en la validación cruzada de dejar uno fuera?
En su artículo Linear Model Selection by Cross-Validation , Jun Shao muestra que para el problema de la selección de variables en la regresión lineal multivariante, el método de validación cruzada de dejar-fuera-fuera (LOOCV) es 'asintóticamente inconsistente'. En inglés simple, tiende a seleccionar modelos con demasiadas variables. En un estudio …


3
Desde la regla de Perceptron hasta el Descenso de gradiente: ¿en qué se diferencian los Perceptrones con una función de activación sigmoidea de la Regresión logística?
Básicamente, mi pregunta es que en los perceptrones multicapa, los perceptrones se usan con una función de activación sigmoidea. Para que en la regla de actualización se calcule comoy^y^\hat{y} y^= 11 + exp( - wTXyo)y^=11+exp⁡(-wTXyo)\hat{y} = \frac{1}{1+\exp(-\mathbf{w}^T\mathbf{x}_i)} ¿En qué se diferencia este Perceptrón "sigmoide" de una regresión logística entonces? Diría …





4
¿Cómo proyectar un nuevo vector en el espacio PCA?
Después de realizar el análisis de componentes principales (PCA), quiero proyectar un nuevo vector en el espacio PCA (es decir, encontrar sus coordenadas en el sistema de coordenadas PCA). He calculado PCA en lenguaje R usando prcomp. Ahora debería poder multiplicar mi vector por la matriz de rotación PCA. ¿Deben …
21 r  pca  r  variance  heteroscedasticity  misspecification  distributions  time-series  data-visualization  modeling  histogram  kolmogorov-smirnov  negative-binomial  likelihood-ratio  econometrics  panel-data  categorical-data  scales  survey  distributions  pdf  histogram  correlation  algorithms  r  gpu  parallel-computing  approximation  mean  median  references  sample-size  normality-assumption  central-limit-theorem  rule-of-thumb  confidence-interval  estimation  mixed-model  psychometrics  random-effects-model  hypothesis-testing  sample-size  dataset  large-data  regression  standard-deviation  variance  approximation  hypothesis-testing  variance  central-limit-theorem  kernel-trick  kernel-smoothing  error  sampling  hypothesis-testing  normality-assumption  philosophical  confidence-interval  modeling  model-selection  experiment-design  hypothesis-testing  statistical-significance  power  asymptotics  information-retrieval  anova  multiple-comparisons  ancova  classification  clustering  factor-analysis  psychometrics  r  sampling  expectation-maximization  markov-process  r  data-visualization  correlation  regression  statistical-significance  degrees-of-freedom  experiment-design  r  regression  curve-fitting  change-point  loess  machine-learning  classification  self-study  monte-carlo  markov-process  references  mathematical-statistics  data-visualization  python  cart  boosting  regression  classification  robust  cart  survey  binomial  psychometrics  likert  psychology  asymptotics  multinomial 


3
Prueba de separabilidad lineal
¿Hay alguna forma de probar la separabilidad lineal de un conjunto de datos de dos clases en altas dimensiones? Mis vectores de características son de 40 de largo. Sé que siempre puedo ejecutar experimentos de regresión logística y determinar la tasa de aciertos frente a la tasa de falsas alarmas …


1
Cómo LDA, una técnica de clasificación, también sirve como técnica de reducción de dimensionalidad como PCA
En este artículo , el autor vincula el análisis discriminante lineal (LDA) con el análisis de componentes principales (PCA). Con mi conocimiento limitado, no puedo seguir cómo LDA puede ser algo similar a PCA. Siempre he pensado que LDA era una forma de algoritmo de clasificación, similar a la regresión …

1
k-fold Validación cruzada del aprendizaje conjunto
Estoy confundido acerca de cómo dividir los datos para la validación cruzada k-fold del aprendizaje en conjunto. Suponiendo que tengo un marco de aprendizaje conjunto para la clasificación. Mi primera capa contiene los modelos de clasificación, por ejemplo, svm, árboles de decisión. Mi segunda capa contiene un modelo de votación, …

Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.