Preguntas etiquetadas con bayesian

La inferencia bayesiana es un método de inferencia estadística que se basa en tratar los parámetros del modelo como variables aleatorias y aplicar el teorema de Bayes para deducir declaraciones de probabilidad subjetivas sobre los parámetros o hipótesis, condicional en el conjunto de datos observado.


1
Calcular la repetibilidad de los efectos de un modelo más antiguo
Acabo de encontrar este artículo , que describe cómo calcular la repetibilidad (también conocida como confiabilidad, también conocida como correlación intraclase) de una medición a través del modelado de efectos mixtos. El código R sería: #fit the model fit = lmer(dv~(1|unit),data=my_data) #obtain the variance estimates vc = VarCorr(fit) residual_var = …
28 mixed-model  reliability  intraclass-correlation  repeatability  spss  factor-analysis  survey  modeling  cross-validation  error  curve-fitting  mediation  correlation  clustering  sampling  machine-learning  probability  classification  metric  r  project-management  optimization  svm  python  dataset  quality-control  checking  clustering  distributions  anova  factor-analysis  exponential  poisson-distribution  generalized-linear-model  deviance  machine-learning  k-nearest-neighbour  r  hypothesis-testing  t-test  r  variance  levenes-test  bayesian  software  bayesian-network  regression  repeated-measures  least-squares  change-scores  variance  chi-squared  variance  nonlinear-regression  regression-coefficients  multiple-comparisons  p-value  r  statistical-significance  excel  sampling  sample  r  distributions  interpretation  goodness-of-fit  normality-assumption  probability  self-study  distributions  references  theory  time-series  clustering  econometrics  binomial  hypothesis-testing  variance  t-test  paired-comparisons  statistical-significance  ab-test  r  references  hypothesis-testing  t-test  normality-assumption  wilcoxon-mann-whitney  central-limit-theorem  t-test  data-visualization  interactive-visualization  goodness-of-fit 



3
¿Por qué los anteriores de Jeffreys se consideran no informativos?
Considere un Jeffreys anterior donde , donde es la información de Fisher.yop ( θ ) ∝ | i ( θ ) |----√p(θ)∝|i(θ)|p(\theta) \propto \sqrt{|i(\theta)|}yoii Sigo viendo esto antes mencionado como un previo no informativo, pero nunca vi un argumento por qué no es informativo. Después de todo, no es un …
27 bayesian  prior 











Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.