set.seed(10)
data=rnorm(12)
f1=rep(c(1,2),6)
f2=c(rep(1,6),rep(2,6))
summary(aov(data~f1*f2))
Df Sum Sq Mean Sq F value Pr(>F)
f1 1 0.535 0.5347 0.597 0.462
f2 1 0.002 0.0018 0.002 0.966
f1:f2 1 0.121 0.1208 0.135 0.723
Residuals 8 7.169 0.8962
summary(lm(data~f1*f2))$coeff
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.05222024 2.732756 0.0191090 0.9852221
f1 -0.17992329 1.728346 -0.1041014 0.9196514
f2 -0.62637109 1.728346 -0.3624106 0.7264325
f1:f2 0.40139439 1.093102 0.3672066 0.7229887
Estos son dos códigos diferentes. del modelo Lm necesitas los coeficientes. mientras que desde el modelo aov solo está tabulando las fuentes de variación. Prueba el código
anova(lm(data~f1*f2))
Analysis of Variance Table
Response: data
Df Sum Sq Mean Sq F value Pr(>F)
f1 1 0.5347 0.53468 0.5966 0.4621
f2 1 0.0018 0.00177 0.0020 0.9657
f1:f2 1 0.1208 0.12084 0.1348 0.7230
Residuals 8 7.1692 0.89615
Esto proporciona la tabulación de las fuentes de variación que conducen a los mismos resultados.
lm
informa, mientras que el Tipo II / III no lo es. Esto se explica con bastante detalle en la respuesta de @ gung a la que se vinculó.