Hmm, después de haber hecho un ejemplo en mi lenguaje MatMate, veo que ya hay una respuesta de Python, que podría ser preferible porque Python es ampliamente utilizado. Pero debido a que aún tenía preguntas, le muestro mi enfoque usando el lenguaje de matriz de Matmate, tal vez es más autocomentario.
Método 1
(usando MatMate):
v=12 // 12 variables
f=3 // subset-correlation based on 3 common factors
vg = v / f // variables per subsets
// generate hidden factor-matrix
// randomu(rows,cols ,lowbound, ubound) gives uniform random matrix
// without explicite bounds the default is: randomu(rows,cols,0,100)
L = { randomu(vg,f) || randomu(vg,f)/100 || randomu(vg,f)/100 , _
randomu(vg,f)/100 || randomu(vg,f) || randomu(vg,f)/100 , _
randomu(vg,f)/100 || randomu(vg,f)/100 || randomu(vg,f) }
// make sure there is itemspecific variance
// by appending a diagonal-matrix with random positive entries
L = L || mkdiag(randomu(v,1,10,20))
// make covariance and correlation matrix
cov = L *' // L multiplied with its transpose
cor = covtocorr(cov)
set ccdezweite=3 ccfeldweite=8
list cor
cor =
1.000, 0.321, 0.919, 0.489, 0.025, 0.019, 0.019, 0.030, 0.025, 0.017, 0.014, 0.014
0.321, 1.000, 0.540, 0.923, 0.016, 0.015, 0.012, 0.030, 0.033, 0.016, 0.012, 0.015
0.919, 0.540, 1.000, 0.679, 0.018, 0.014, 0.012, 0.029, 0.028, 0.014, 0.012, 0.012
0.489, 0.923, 0.679, 1.000, 0.025, 0.022, 0.020, 0.040, 0.031, 0.014, 0.011, 0.014
0.025, 0.016, 0.018, 0.025, 1.000, 0.815, 0.909, 0.758, 0.038, 0.012, 0.018, 0.014
0.019, 0.015, 0.014, 0.022, 0.815, 1.000, 0.943, 0.884, 0.035, 0.012, 0.014, 0.012
0.019, 0.012, 0.012, 0.020, 0.909, 0.943, 1.000, 0.831, 0.036, 0.013, 0.015, 0.010
0.030, 0.030, 0.029, 0.040, 0.758, 0.884, 0.831, 1.000, 0.041, 0.017, 0.022, 0.020
0.025, 0.033, 0.028, 0.031, 0.038, 0.035, 0.036, 0.041, 1.000, 0.831, 0.868, 0.780
0.017, 0.016, 0.014, 0.014, 0.012, 0.012, 0.013, 0.017, 0.831, 1.000, 0.876, 0.848
0.014, 0.012, 0.012, 0.011, 0.018, 0.014, 0.015, 0.022, 0.868, 0.876, 1.000, 0.904
0.014, 0.015, 0.012, 0.014, 0.014, 0.012, 0.010, 0.020, 0.780, 0.848, 0.904, 1.000
El problema aquí podría ser que definimos bloques de submatrices que tienen altas correlaciones dentro con poca correlación entre y esto no es programáticamente sino por las constantes expresiones de concatenación. Tal vez este enfoque podría modelarse de manera más elegante en Python.
Método 2 (a)
Después de eso, hay un enfoque completamente diferente, donde llenamos
la posible covarianza restante por cantidades aleatorias del 100 por ciento en una matriz de carga de factores. Esto se hace en Pari / GP:
{L = matrix(8,8); \\ generate an empty factor-loadings-matrix
for(r=1,8,
rv=1.0; \\ remaining variance for variable is 1.0
for(c=1,8,
pv=if(c<8,random(100)/100.0,1.0); \\ define randomly part of remaining variance
cv= pv * rv; \\ compute current partial variance
rv = rv - cv; \\ compute the now remaining variance
sg = (-1)^(random(100) % 2) ; \\ also introduce randomly +- signs
L[r,c] = sg*sqrt(cv) ; \\ compute factor loading as signed sqrt of cv
)
);}
cor = L * L~
y la matriz de correlación producida es
1.000 -0.7111 -0.08648 -0.7806 0.8394 -0.7674 0.6812 0.2765
-0.7111 1.000 0.06073 0.7485 -0.7550 0.8052 -0.8273 0.05863
-0.08648 0.06073 1.000 0.5146 -0.1614 0.1459 -0.4760 -0.01800
-0.7806 0.7485 0.5146 1.000 -0.8274 0.7644 -0.9373 -0.06388
0.8394 -0.7550 -0.1614 -0.8274 1.000 -0.5823 0.8065 -0.1929
-0.7674 0.8052 0.1459 0.7644 -0.5823 1.000 -0.7261 -0.4822
0.6812 -0.8273 -0.4760 -0.9373 0.8065 -0.7261 1.000 -0.1526
0.2765 0.05863 -0.01800 -0.06388 -0.1929 -0.4822 -0.1526 1.000
Posiblemente esto genera una matriz de correlación con componentes principales dominantes debido a la regla de generación acumulativa para la matriz de carga de factores. También podría ser mejor asegurar una definición positiva al hacer que la última parte de la varianza sea un factor único. Lo dejé en el programa para mantener el enfoque en el principio general.
Una matriz de correlación de 100x100 tenía las siguientes frecuencias de correlaciones (redondeadas a 1 lugar dec.)
e f e: entry(rounded) f: frequency
-----------------------------------------------------
-1.000, 108.000
-0.900, 460.000
-0.800, 582.000
-0.700, 604.000
-0.600, 548.000
-0.500, 540.000
-0.400, 506.000
-0.300, 482.000
-0.200, 488.000
-0.100, 464.000
0.000, 434.000
0.100, 486.000
0.200, 454.000
0.300, 468.000
0.400, 462.000
0.500, 618.000
0.600, 556.000
0.700, 586.000
0.800, 536.000
0.900, 420.000
1.000, 198.000
[actualizar]. Hmm, la matriz 100x100 está mal acondicionada; Pari / GP no puede determinar los valores propios correctamente con la función polroots (charpoly ()), incluso con una precisión de 200 dígitos. Hice una rotación de Jacobi para formar pca en la matriz de carga L y encontré valores propios extremadamente pequeños, los imprimí en logaritmos a la base 10 (que dan aproximadamente la posición del punto decimal). Lea de izquierda a derecha y luego fila por fila:
log_10(eigenvalues):
1.684, 1.444, 1.029, 0.818, 0.455, 0.241, 0.117, -0.423, -0.664, -1.040
-1.647, -1.799, -1.959, -2.298, -2.729, -3.059, -3.497, -3.833, -4.014, -4.467
-4.992, -5.396, -5.511, -6.366, -6.615, -6.834, -7.535, -8.138, -8.263, -8.766
-9.082, -9.482, -9.940, -10.167, -10.566, -11.110, -11.434, -11.788, -12.079, -12.722
-13.122, -13.322, -13.444, -13.933, -14.390, -14.614, -15.070, -15.334, -15.904, -16.278
-16.396, -16.708, -17.022, -17.746, -18.090, -18.358, -18.617, -18.903, -19.186, -19.476
-19.661, -19.764, -20.342, -20.648, -20.805, -20.922, -21.394, -21.740, -21.991, -22.291
-22.792, -23.184, -23.680, -24.100, -24.222, -24.631, -24.979, -25.161, -25.282, -26.211
-27.181, -27.626, -27.861, -28.054, -28.266, -28.369, -29.074, -29.329, -29.539, -29.689
-30.216, -30.784, -31.269, -31.760, -32.218, -32.446, -32.785, -33.003, -33.448, -34.318
[actualización 2]
Método 2 (b)
Una mejora podría ser aumentar la varianza específica del ítem a un nivel no marginal y reducir a un número razonablemente menor de factores comunes (por ejemplo, la raíz cuadrada entera del número de ítem):
{ dimr = 100;
dimc = sqrtint(dimr); \\ 10 common factors
L = matrix(dimr,dimr+dimc); \\ loadings matrix
\\ with dimr itemspecific and
\\ dimc common factors
for(r=1,dim,
vr=1.0; \\ complete variance per item
vu=0.05+random(100)/1000.0; \\ random variance +0.05
\\ for itemspecific variance
L[r,r]=sqrt(vu); \\ itemspecific factor loading
vr=vr-vu;
for(c=1,dimc,
cv=if(c<dimc,random(100)/100,1.0)*vr;
vr=vr-cv;
L[r,dimr+c]=(-1)^(random(100) % 2)*sqrt(cv)
)
);}
cov=L*L~
cp=charpoly(cov) \\ does not work even with 200 digits precision
pr=polroots(cp) \\ spurious negative and complex eigenvalues...
La estructura del resultado.
en términos de distribución de correlaciones:
sigue siendo similar (también la desagradable no descomponibilidad de PariGP), pero los valores propios, cuando se encuentran mediante la rotación jacobi de la matriz de carga, ahora tienen una mejor estructura, para un ejemplo recién calculado obtuve los valores propios como
log_10(eigenvalues):
1.677, 1.326, 1.063, 0.754, 0.415, 0.116, -0.262, -0.516, -0.587, -0.783
-0.835, -0.844, -0.851, -0.854, -0.858, -0.862, -0.862, -0.868, -0.872, -0.873
-0.878, -0.882, -0.884, -0.890, -0.895, -0.896, -0.896, -0.898, -0.902, -0.904
-0.904, -0.909, -0.911, -0.914, -0.920, -0.923, -0.925, -0.927, -0.931, -0.935
-0.939, -0.939, -0.943, -0.948, -0.951, -0.955, -0.956, -0.960, -0.967, -0.969
-0.973, -0.981, -0.986, -0.989, -0.997, -1.003, -1.005, -1.011, -1.014, -1.019
-1.022, -1.024, -1.031, -1.038, -1.040, -1.048, -1.051, -1.061, -1.064, -1.068
-1.070, -1.074, -1.092, -1.092, -1.108, -1.113, -1.120, -1.134, -1.139, -1.147
-1.150, -1.155, -1.158, -1.166, -1.171, -1.175, -1.184, -1.184, -1.192, -1.196
-1.200, -1.220, -1.237, -1.245, -1.252, -1.262, -1.269, -1.282, -1.287, -1.290