Preguntas etiquetadas con unsupervised-learning

Encontrar estructura oculta (estadística) en datos no etiquetados, incluida la agrupación en clústeres y la extracción de características para la reducción de dimensionalidad.

1


2
¿Qué tipos de problemas de aprendizaje son adecuados para las máquinas de vectores de soporte?
¿Cuáles son las características o propiedades que indican que se puede abordar un determinado problema de aprendizaje utilizando máquinas de vectores de soporte? En otras palabras, ¿qué es lo que, cuando ves un problema de aprendizaje, te hace decir "oh, definitivamente debería usar SVM para esto" en lugar de redes …

5
agrandar el mapa de calor marino
Creo un corr()df a partir de un df original. El corr()DF salió 70 X 70 y es imposible de visualizar el mapa de calor ... sns.heatmap(df). Si trato de mostrar corr = df.corr(), la tabla no se ajusta a la pantalla y puedo ver todas las correlaciones. ¿Es una forma …
16 visualization  pandas  plotting  machine-learning  neural-network  svm  decision-trees  svm  efficiency  python  linear-regression  machine-learning  nlp  topic-model  lda  named-entity-recognition  naive-bayes-classifier  association-rules  fuzzy-logic  kaggle  deep-learning  tensorflow  inception  classification  feature-selection  feature-engineering  machine-learning  scikit-learn  tensorflow  keras  encoding  nlp  text-mining  nlp  rnn  python  neural-network  feature-extraction  machine-learning  predictive-modeling  python  r  linear-regression  clustering  r  ggplot2  neural-network  neural-network  training  python  neural-network  deep-learning  rnn  predictive-modeling  databases  sql  programming  distribution  dataset  cross-validation  neural-network  deep-learning  rnn  machine-learning  machine-learning  python  deep-learning  data-mining  tensorflow  visualization  tools  sql  embeddings  orange  feature-extraction  unsupervised-learning  gan  machine-learning  python  data-mining  pandas  machine-learning  data-mining  bigdata  apache-spark  apache-hadoop  deep-learning  python  convnet  keras  aggregation  clustering  k-means  r  random-forest  decision-trees  reference-request  visualization  data  pandas  plotting  neural-network  keras  rnn  theano  deep-learning  tensorflow  inception  predictive-modeling  deep-learning  regression  sentiment-analysis  nlp  encoding  deep-learning  python  scikit-learn  lda  convnet  keras  predictive-modeling  regression  overfitting  regression  svm  prediction  machine-learning  similarity  word2vec  information-retrieval  word-embeddings  neural-network  deep-learning  rnn 


4
Cómo se puede usar word2vec para identificar palabras invisibles y relacionarlas con datos ya entrenados
Estaba trabajando en el modelo gensim de word2vec y lo encontré realmente interesante. Estoy interesado en encontrar cómo una palabra desconocida / invisible cuando se verifica con el modelo podrá obtener términos similares del modelo entrenado. es posible? ¿Se puede ajustar word2vec para esto? O el cuerpo de entrenamiento necesita …


3

2
¿Cuándo elegir regresión lineal o árbol de decisión o regresión de bosque aleatorio? [cerrado]
Cerrada . Esta pregunta necesita estar más centrada . Actualmente no está aceptando respuestas. ¿Quieres mejorar esta pregunta? Actualice la pregunta para que se centre en un problema solo editando esta publicación . Cerrado hace 4 años . Estoy trabajando en un proyecto y tengo dificultades para decidir qué algoritmo …
10 machine-learning  algorithms  random-forest  linear-regression  decision-trees  machine-learning  predictive-modeling  forecast  r  clustering  similarity  data-mining  dataset  statistics  text-mining  text-mining  data-cleaning  data-wrangling  machine-learning  classification  algorithms  xgboost  data-mining  dataset  dataset  regression  graphs  svm  unbalanced-classes  cross-validation  optimization  hyperparameter  genetic-algorithms  visualization  predictive-modeling  correlation  machine-learning  predictive-modeling  apache-spark  statistics  normalization  apache-spark  map-reduce  r  correlation  confusion-matrix  r  data-cleaning  classification  terminology  dataset  image-classification  machine-learning  regression  apache-spark  machine-learning  data-mining  nlp  parsing  machine-learning  dimensionality-reduction  visualization  clustering  multiclass-classification  evaluation  unsupervised-learning  machine-learning  machine-learning  data-mining  supervised-learning  unsupervised-learning  machine-learning  data-mining  classification  statistics  predictive-modeling  data-mining  clustering  python  pandas  machine-learning  dataset  data-cleaning  data  bigdata  software-recommendation 


2
¿Cómo se pueden usar los codificadores automáticos para la agrupación?
Supongamos que tengo un conjunto de señales en el dominio del tiempo sin absolutamente ninguna etiqueta . Quiero agruparlos en 2 o 3 clases. Los codificadores automáticos son redes sin supervisión que aprenden a comprimir las entradas. Entonces dado una entradax(i)x(i)x^{(i)}pesas W1W1W_1 y W2W2W_2sesgos b1b1b_1 y b2b2b_2y salida x^(i)x^(i)\hat{x}^{(i)}, podemos …

Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.