Preguntas etiquetadas con convnet

Para preguntas sobre "Redes neuronales convolucionales" (CNN)


1
¿Cuántas celdas LSTM debo usar?
¿Existen reglas generales (o reglas reales) relacionadas con la cantidad mínima, máxima y "razonable" de celdas LSTM que debo usar? Específicamente me relaciono con BasicLSTMCell de TensorFlow y la num_unitspropiedad. Suponga que tengo un problema de clasificación definido por: t - number of time steps n - length of input …
12 rnn  machine-learning  r  predictive-modeling  random-forest  python  language-model  sentiment-analysis  encoding  machine-learning  deep-learning  neural-network  dataset  caffe  classification  xgboost  multiclass-classification  unbalanced-classes  time-series  descriptive-statistics  python  r  clustering  machine-learning  python  deep-learning  tensorflow  machine-learning  python  predictive-modeling  probability  scikit-learn  svm  machine-learning  python  classification  gradient-descent  regression  research  python  neural-network  deep-learning  convnet  keras  python  tensorflow  machine-learning  deep-learning  tensorflow  python  r  bigdata  visualization  rstudio  pandas  pyspark  dataset  time-series  multilabel-classification  machine-learning  neural-network  ensemble-modeling  kaggle  machine-learning  linear-regression  cnn  convnet  machine-learning  tensorflow  association-rules  machine-learning  predictive-modeling  training  model-selection  neural-network  keras  deep-learning  deep-learning  convnet  image-classification  predictive-modeling  prediction  machine-learning  python  classification  predictive-modeling  scikit-learn  machine-learning  python  random-forest  sampling  training  recommender-system  books  python  neural-network  nlp  deep-learning  tensorflow  python  matlab  information-retrieval  search  search-engine  deep-learning  convnet  keras  machine-learning  python  cross-validation  sampling  machine-learning 

3
¿Hay algún buen modelo de lenguaje listo para usar para Python?
Estoy creando prototipos de una aplicación y necesito un modelo de lenguaje para calcular la perplejidad en algunas oraciones generadas. ¿Hay algún modelo de lenguaje entrenado en Python que pueda usar fácilmente? Algo simple como model = LanguageModel('en') p1 = model.perplexity('This is a well constructed sentence') p2 = model.perplexity('Bunny lamp …
11 python  nlp  language-model  r  statistics  linear-regression  machine-learning  classification  random-forest  xgboost  python  sampling  data-mining  orange  predictive-modeling  recommender-system  statistics  dimensionality-reduction  pca  machine-learning  python  deep-learning  keras  reinforcement-learning  neural-network  image-classification  r  dplyr  deep-learning  keras  tensorflow  lstm  dropout  machine-learning  sampling  categorical-data  data-imputation  machine-learning  deep-learning  machine-learning-model  dropout  deep-network  pandas  data-cleaning  data-science-model  aggregation  python  neural-network  reinforcement-learning  policy-gradients  r  dataframe  dataset  statistics  prediction  forecasting  r  k-means  python  scikit-learn  labels  python  orange  cloud-computing  machine-learning  neural-network  deep-learning  rnn  recurrent-neural-net  logistic-regression  missing-data  deep-learning  autoencoder  apache-hadoop  time-series  data  preprocessing  classification  predictive-modeling  time-series  machine-learning  python  feature-selection  autoencoder  deep-learning  keras  tensorflow  lstm  word-embeddings  predictive-modeling  prediction  machine-learning-model  machine-learning  classification  binary  theory  machine-learning  neural-network  time-series  lstm  rnn  neural-network  deep-learning  keras  tensorflow  convnet  computer-vision 


2
¿Cuál es la diferencia entre convolución dilatada y deconvolución?
Estas dos operaciones de convolución son muy comunes en el aprendizaje profundo en este momento. Leí sobre la capa convolucional dilatada en este artículo: WAVENET: UN MODELO GENERATIVO PARA AUDIO CRUDO y De-convolution se encuentra en este documento: Redes completamente convolucionales para la segmentación semántica Ambos parecen muestrear la imagen …



3
Modelo recurrente (CNN) en datos EEG
Me pregunto cómo interpretar una arquitectura recurrente en un contexto EEG. Específicamente, estoy pensando en esto como una CNN recurrente (a diferencia de arquitecturas como LSTM), pero tal vez también se aplique a otros tipos de redes recurrentes Cuando leo sobre R-CNN, generalmente se explican en contextos de clasificación de …

1
Número y tamaño de capas densas en una CNN
La mayoría de las redes que he visto tienen una o dos capas densas antes de la capa final de softmax. ¿Hay alguna forma de principios de elegir el número y el tamaño de las capas densas? ¿Son dos capas densas más representativas que una para el mismo número de …
10 convnet 

3
Relación entre convolución en matemáticas y CNN
He leído la explicación de la convolución y la entiendo hasta cierto punto. ¿Alguien puede ayudarme a entender cómo esta operación se relaciona con la convolución en redes neuronales convolucionales? ¿Es el filtro como una función gque aplica peso?
10 machine-learning  neural-network  deep-learning  cnn  convolution  machine-learning  ensemble-modeling  machine-learning  classification  data-mining  clustering  machine-learning  feature-selection  convnet  pandas  graphs  ipython  machine-learning  apache-spark  multiclass-classification  naive-bayes-classifier  multilabel-classification  machine-learning  data-mining  dataset  data-cleaning  data  machine-learning  data-mining  statistics  correlation  machine-learning  data-mining  dataset  data-cleaning  data  beginner  career  python  r  visualization  machine-learning  data-mining  nlp  stanford-nlp  dataset  linear-regression  time-series  correlation  anomaly-detection  ensemble-modeling  data-mining  machine-learning  python  data-mining  recommender-system  machine-learning  cross-validation  model-selection  scoring  prediction  sequential-pattern-mining  categorical-data  python  tensorflow  image-recognition  statistics  machine-learning  data-mining  predictive-modeling  data-cleaning  preprocessing  classification  deep-learning  tensorflow  machine-learning  algorithms  data  keras  categorical-data  reference-request  loss-function  classification  logistic-regression  apache-spark  prediction  naive-bayes-classifier  beginner  nlp  word2vec  vector-space-models  scikit-learn  decision-trees  data  programming 


3



3
¿Por qué usar NN convolucionales para una tarea de inspección visual sobre la coincidencia clásica de plantillas de CV?
Tuve una discusión interesante sobre la base de un proyecto en el que estábamos trabajando: ¿por qué usar un sistema de inspección visual CNN sobre un algoritmo de coincidencia de plantillas? Antecedentes: había mostrado una demostración de un sistema simple de visión CNN (cámara web + computadora portátil) que detectaba …

Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.