Preguntas etiquetadas con taylor-series

1
Aproximación de la función de pérdida XGBoost con la expansión Taylor
Como ejemplo, tome la función objetivo del modelo XGBoost en la iteración :ttt L(t)=∑i=1nℓ(yi,y^(t−1)i+ft(xi))+Ω(ft)L(t)=∑i=1nℓ(yi,y^i(t−1)+ft(xi))+Ω(ft)\mathcal{L}^{(t)}=\sum_{i=1}^n\ell(y_i,\hat{y}_i^{(t-1)}+f_t(\mathbf{x}_i))+\Omega(f_t) donde es la función de pérdida, es la salida del árbol ' y es la regularización. Uno de los (muchos) pasos clave para el cálculo rápido es la aproximación:ℓℓ\ellftftf_ttttΩΩ\Omega L(t)≈∑i=1nℓ(yi,y^(t−1)i)+gtft(xi)+12hif2t(xi)+Ω(ft),L(t)≈∑i=1nℓ(yi,y^i(t−1))+gtft(xi)+12hift2(xi)+Ω(ft),\mathcal{L}^{(t)}\approx \sum_{i=1}^n\ell(y_i,\hat{y}_i^{(t-1)})+g_tf_t(\mathbf{x}_i)+\frac{1}{2}h_if_t^2(\mathbf{x}_i)+\Omega(f_t), donde y son las derivadas …

1
Aproximación
Estaba leyendo casualmente un artículo (en economía) que tenía la siguiente aproximación para :log(E(X))log⁡(E(X))\log(E(X)) log(E(X))≈E(log(X))+0.5var(log(X))log⁡(E(X))≈E(log⁡(X))+0.5var(log⁡(X))\log(E(X)) \approx E(\log(X))+0.5 \mathrm{var}(\log(X)) , lo que el autor dice que es exacto si X es log-normal (lo cual sé). Lo que no sé es cómo derivar esta aproximación. Intenté calcular una aproximación de Taylor de …
Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.