mitarma
Xt^= Xt- etXtarima(.5,.6)
arma
library(forecast)
n=1000
ts_AR <- arima.sim(n = n, list(ar = 0.5,ma=0.6))
f=arima(ts_AR,order=c(1,0,1),include.mean=FALSE)
summary(f)
Series: ts_AR
ARIMA(1,0,1) with zero mean
Coefficients:
ar1 ma1
0.4879 0.5595
s.e. 0.0335 0.0317
sigma^2 estimated as 1.014: log likelihood=-1426.7
AIC=2859.4 AICc=2859.42 BIC=2874.12
Training set error measures:
ME RMSE MAE MPE MAPE MASE
Training set 0.02102758 1.00722 0.8057205 40.05802 160.1078 0.6313145
mi1= 0t = 2 , . . . , nmit= Xt- A r ∗ Xt - 1- Ma ∗ et - 1A rMETROuna
e = rep(1,n)
e[1] = 0 ##since there is no residual at 1, e1 = 0
for (t in (2 : n)){
e[t] = ts_AR[t]-coef(f)[1]*ts_AR[t-1]-coef(f)[2]*e[t-1]
}
mitXt^= Xt- etmit
cbind(fitted.from.package=fitted(f)[1:10],fitted.calculated.manually=ts_AR[1:10]-e[1:10])
fitted.from.package fitted.calculated.manually
[1,] -0.4193068 -1.1653515
[2,] -0.8395447 -0.5685977
[3,] -0.4386956 -0.6051324
[4,] 0.3594109 0.4403898
[5,] 2.9358336 2.9013738
[6,] 1.3489537 1.3682191
[7,] 0.5329436 0.5219576
[8,] 1.0221220 1.0283511
[9,] 0.6083310 0.6048668
[10,] -0.5371484 -0.5352324
mi1= 0arima
mit
Ahora para el modelo Ar (1). Ajusté el modelo (sin media) y le muestro directamente cómo calcular los valores ajustados utilizando los coeficientes. Esta vez no calculé los residuos. Tenga en cuenta que reporté los primeros 10 valores ajustados eliminando el primero (ya que nuevamente sería diferente dependiendo de cómo lo defina). Como puede ver, son completamente iguales.
f=arima(ts_AR,order=c(1,0,0),include.mean=FALSE)
cbind(fitted.from.package=fitted(f)[2:10],fitted.calculated.manually=coef(f)*ts_AR[1:9])
fitted.from.package fitted.calculated.manually
[1,] -0.8356307 -0.8356307
[2,] -0.6320580 -0.6320580
[3,] 0.0696877 0.0696877
[4,] 2.1549019 2.1549019
[5,] 2.0480074 2.0480074
[6,] 0.8814094 0.8814094
[7,] 0.9039184 0.9039184
[8,] 0.8079823 0.8079823
[9,] -0.1347165 -0.1347165
arima
dicen: "(...) las innovaciones y su varianza encontradas por un filtro de Kalman". Entonces, la función aparentemente de alguna manera usa el filtro de Kalman para los valores iniciales.