Una respuesta más seria para avanzar en esta pregunta y especialmente el continuo interés de @ silverfish. Un enfoque para responder preguntas como esta es ejecutar algunas simulaciones para comparar. A continuación se muestra un código R que simula datos bajo varias alternativas y realiza varias de las pruebas de normalidad y compara la potencia (y un intervalo de confianza en la potencia ya que la potencia se estima mediante simulación). Ajusté un poco los tamaños de muestra porque no era interesante cuando muchas de las potencias estaban cerca del 100% o 5%, encontré números redondos que daban potencias cerca del 80%. Cualquier persona interesada podría tomar fácilmente este código y modificarlo para diferentes supuestos, diferentes alternativas, etc.
Puede ver que existen alternativas para las cuales algunas de las pruebas funcionan mejor y otras en las que lo hacen peor. La pregunta importante es, entonces, qué alternativas son más realistas para sus preguntas / área científica. Esto realmente debe seguirse con una simulación del efecto de los tipos de no normalidad de interés en otras pruebas que se realizan. Algunos de estos tipos de no normalidad afectan en gran medida a otras pruebas basadas en la normalidad, otras no las afectan demasiado.
> library(nortest)
>
> simfun1 <- function(fun=function(n) rnorm(n), n=250) {
+ x <- fun(n)
+ c(sw=shapiro.test(x)$p.value, sf=sf.test(x)$p.value, ad=ad.test(x)$p.value,
+ cvm=cvm.test(x)$p.value, lillie=lillie.test(x)$p.value,
+ pearson=pearson.test(x)$p.value, snow=0)
+ }
>
> ### Test size using null hypothesis near true
>
> out1 <- replicate(10000, simfun1())
> apply(out1, 1, function(x) mean(x<=0.05))
sw sf ad cvm lillie pearson snow
0.0490 0.0520 0.0521 0.0509 0.0531 0.0538 1.0000
> apply(out1, 1, function(x) prop.test(sum(x<=0.05),length(x))$conf.int) #$
sw sf ad cvm lillie pearson snow
[1,] 0.04489158 0.04776981 0.04786582 0.04671398 0.04882619 0.04949870 0.9995213
[2,] 0.05345887 0.05657820 0.05668211 0.05543493 0.05772093 0.05844785 1.0000000
>
> ### Test again with mean and sd different
>
> out2 <- replicate(10000, simfun1(fun=function(n) rnorm(n,100,5)))
> apply(out2, 1, function(x) mean(x<=0.05))
sw sf ad cvm lillie pearson snow
0.0482 0.0513 0.0461 0.0477 0.0515 0.0506 1.0000
> apply(out2, 1, function(x) prop.test(sum(x<=0.05),length(x))$conf.int) #$
sw sf ad cvm lillie pearson snow
[1,] 0.04412478 0.04709785 0.04211345 0.04364569 0.04728982 0.04642612 0.9995213
[2,] 0.05262633 0.05585073 0.05043938 0.05210583 0.05605860 0.05512303 1.0000000
>
> #### now for the power under different forms of non-normality
>
> ## heavy tails, t(3)
> rt3 <- function(n) rt(n, df=3)
>
> out3 <- replicate(10000, simfun1(fun=rt3, n=75))
There were 50 or more warnings (use warnings() to see the first 50)
> round(apply(out3, 1, function(x) mean(x<=0.05, na.rm=TRUE)),3)
sw sf ad cvm lillie pearson snow
0.788 0.831 0.756 0.726 0.624 0.440 1.000
> round(apply(out3, 1, function(x){
+ prop.test(sum(x<=0.05,na.rm=TRUE),sum(!is.na(x)))$conf.int),3) } #$
sw sf ad cvm lillie pearson snow
[1,] 0.780 0.824 0.748 0.717 0.614 0.431 1
[2,] 0.796 0.838 0.765 0.734 0.633 0.450 1
>
>
> ## light tails, uniform
> u <- function(n) runif(n)
>
> out4 <- replicate(10000, simfun1(fun=u, n=65))
> round(apply(out4, 1, function(x) mean(x<=0.05, na.rm=TRUE)),3)
sw sf ad cvm lillie pearson snow
0.906 0.712 0.745 0.591 0.362 0.270 1.000
> round(apply(out4, 1, function(x){
+ prop.test(sum(x<=0.05,na.rm=TRUE),sum(!is.na(x)))$conf.int),3) } #$
sw sf ad cvm lillie pearson snow
[1,] 0.900 0.703 0.737 0.581 0.353 0.261 1
[2,] 0.911 0.720 0.754 0.600 0.372 0.279 1
>
> ## double exponential, Laplace
> de <- function(n) sample(c(-1,1), n, replace=TRUE) * rexp(n)
>
> out5 <- replicate(10000, simfun1(fun=de, n=100))
> round(apply(out5, 1, function(x) mean(x<=0.05, na.rm=TRUE)),3)
sw sf ad cvm lillie pearson snow
0.796 0.844 0.824 0.820 0.706 0.477 1.000
> round(apply(out5, 1, function(x){
+ prop.test(sum(x<=0.05,na.rm=TRUE),sum(!is.na(x)))$conf.int),3) } #$
sw sf ad cvm lillie pearson snow
[1,] 0.788 0.837 0.817 0.813 0.697 0.467 1
[2,] 0.804 0.851 0.832 0.828 0.715 0.486 1
>
> ## skewed, gamma(2,2)
> g22 <- function(n) rgamma(n,2,2)
>
> out6 <- replicate(10000, simfun1(fun=g22, n=50))
Warning message:
In cvm.test(x) :
p-value is smaller than 7.37e-10, cannot be computed more accurately
> round(apply(out6, 1, function(x) mean(x<=0.05, na.rm=TRUE)),3)
sw sf ad cvm lillie pearson snow
0.954 0.930 0.893 0.835 0.695 0.656 1.000
> round(apply(out6, 1, function(x){
+ prop.test(sum(x<=0.05,na.rm=TRUE),sum(!is.na(x)))$conf.int),3) } #$
sw sf ad cvm lillie pearson snow
[1,] 0.950 0.925 0.886 0.827 0.686 0.646 1
[2,] 0.958 0.935 0.899 0.842 0.704 0.665 1
>
> ## skewed, gamma(2,2)
> g99 <- function(n) rgamma(n,9,9)
>
> out7 <- replicate(10000, simfun1(fun=g99, n=150))
> round(apply(out7, 1, function(x) mean(x<=0.05, na.rm=TRUE)),3)
sw sf ad cvm lillie pearson snow
0.844 0.818 0.724 0.651 0.526 0.286 1.000
> round(apply(out7, 1, function(x){
+ prop.test(sum(x<=0.05,na.rm=TRUE),sum(!is.na(x)))$conf.int),3) } #$
sw sf ad cvm lillie pearson snow
[1,] 0.836 0.810 0.715 0.642 0.516 0.277 1
[2,] 0.851 0.826 0.732 0.660 0.536 0.294 1
>
> ## tails normal, middle not
> mid <- function(n) {
+ x <- rnorm(n)
+ x[ x > -0.5 & x < 0.5 ] <- 0
+ x
+ }
>
> out9 <- replicate(10000, simfun1(fun=mid, n=30))
Warning messages:
1: In cvm.test(x) :
p-value is smaller than 7.37e-10, cannot be computed more accurately
2: In cvm.test(x) :
p-value is smaller than 7.37e-10, cannot be computed more accurately
> round(apply(out9, 1, function(x) mean(x<=0.05, na.rm=TRUE)),3)
sw sf ad cvm lillie pearson snow
0.374 0.371 0.624 0.739 0.884 0.948 1.000
> round(apply(out9, 1, function(x){
+ prop.test(sum(x<=0.05,na.rm=TRUE),sum(!is.na(x)))$conf.int),3) } #$
sw sf ad cvm lillie pearson snow
[1,] 0.365 0.362 0.614 0.730 0.878 0.943 1
[2,] 0.384 0.381 0.633 0.747 0.890 0.952 1
>
> ## mixture on variance
> mv <- function(n, p=0.1, sd=3) {
+ rnorm(n,0, ifelse(runif(n)<p, sd, 1))
+ }
>
> out10 <- replicate(10000, simfun1(fun=mv, n=100))
Warning message:
In cvm.test(x) :
p-value is smaller than 7.37e-10, cannot be computed more accurately
> round(apply(out10, 1, function(x) mean(x<=0.05, na.rm=TRUE)),3)
sw sf ad cvm lillie pearson snow
0.800 0.844 0.682 0.609 0.487 0.287 1.000
> round(apply(out10, 1, function(x){
+ prop.test(sum(x<=0.05,na.rm=TRUE),sum(!is.na(x)))$conf.int),3) } #$
sw sf ad cvm lillie pearson snow
[1,] 0.792 0.837 0.673 0.599 0.477 0.278 1
[2,] 0.808 0.851 0.691 0.619 0.497 0.296 1
>
> ## mixture on mean
> mm <- function(n, p=0.3, mu=2) {
+ rnorm(n, ifelse(runif(n)<p, mu, 0), 1)
+ }
>
> out11 <- replicate(10000, simfun1(fun=mm, n=400))
> round(apply(out11, 1, function(x) mean(x<=0.05, na.rm=TRUE)),3)
sw sf ad cvm lillie pearson snow
0.776 0.710 0.808 0.788 0.669 0.354 1.000
> round(apply(out11, 1, function(x){
+ prop.test(sum(x<=0.05,na.rm=TRUE),sum(!is.na(x)))$conf.int),3) } #$
sw sf ad cvm lillie pearson snow
[1,] 0.768 0.701 0.801 0.780 0.659 0.344 1
[2,] 0.784 0.719 0.816 0.796 0.678 0.363 1