Si tiene la intención de hacer muchas estadísticas bayesianas, le resultará útil aprender el lenguaje BUGS / JAGS, al que se puede acceder en R a través de los paquetes R2OpenBUGS o R2WinBUGS.
Sin embargo, en aras de un ejemplo rápido que no requiere comprender la sintaxis de BUGS, puede usar el paquete "bayesm" que tiene la función runiregGibbs para muestrear desde la distribución posterior. Aquí hay un ejemplo con datos similares a los que usted describe .....
library(bayesm)
podwt <- structure(list(wt = c(1.76, 1.45, 1.03, 1.53, 2.34, 1.96, 1.79, 1.21, 0.49, 0.85, 1, 1.54, 1.01, 0.75, 2.11, 0.92), treat = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("I", "U"), class = "factor"), mus = c(4.15, 2.76, 1.77, 3.11, 4.65, 3.46, 3.75, 2.04, 1.25, 2.39, 2.54, 3.41, 1.27, 1.26, 3.87, 1.01)), .Names = c("wt", "treat", "mus"), row.names = c(NA, -16L), class = "data.frame")
# response
y1 <- podwt$wt
# First run a one-way anova
# Create the design matrix - need to insert a column of 1s
x1 <- cbind(matrix(1,nrow(podwt),1),podwt$treat)
# data for the Bayesian analysis
dt1 <- list(y=y1,X=x1)
# runiregGibbs uses a normal prior for the regression coefficients and
# an inverse chi-squared prior for va
# mean of the normal prior. We have 2 estimates - 1 intercept
# and 1 regression coefficient
betabar1 <- c(0,0)
# Pecision matrix for the normal prior. Again we have 2
A1 <- 0.01 * diag(2)
# note this is a very diffuse prior
# degrees of freedom for the inverse chi-square prior
n1 <- 3
# scale parameter for the inverse chi-square prior
ssq1 <- var(y1)
Prior1 <- list(betabar=betabar1, A=A1, nu=n1, ssq=ssq1)
# number of iterations of the Gibbs sampler
iter <- 10000
# thinning/slicing parameter. 1 means we keep all all values
slice <- 1
MCMC <- list(R=iter, keep=slice)
sim1 <- runiregGibbs(dt1, Prior1, MCMC)
plot(sim1$betadraw)
plot(sim1$sigmasqdraw)
summary(sim1$betadraw)
summary(sim1$sigmasqdraw)
# compare with maximum likelihood estimates:
fitpodwt <- lm(wt~treat, data=podwt)
summary(fitpodwt)
anova(fitpodwt)
# now for ordinary linear regression
x2 <- cbind(matrix(1,nrow(podwt),1),podwt$mus)
dt2 <- list(y=y1,X=x2)
sim2 <- runiregGibbs(dt1, Prior1, MCMC)
summary(sim1$betadraw)
summary(sim1$sigmasqdraw)
plot(sim$betadraw)
plot(sim$sigmasqdraw)
# compare with maximum likelihood estimates:
summary(lm(podwt$wt~mus,data=podwt))
# now with both variables
x3 <- cbind(matrix(1,nrow(podwt),1),podwt$treat,podwt$mus)
dt3 <- list(y=y1,X=x3)
# now we have an additional estimate so modify the prior accordingly
betabar1 <- c(0,0,0)
A1 <- 0.01 * diag(3)
Prior1 <- list(betabar=betabar1, A=A1, nu=n1, ssq=ssq1)
sim3 <- runiregGibbs(dt3, Prior1, MCMC)
plot(sim3$betadraw)
plot(sim3$sigmasqdraw)
summary(sim3$betadraw)
summary(sim3$sigmasqdraw)
# compare with maximum likelihood estimates:
summary(lm(podwt$wt~treat+mus,data=podwt))
Los extractos de la salida son:
Anova:
Bayesian:
Summary of Posterior Marginal Distributions
Moments
mean std dev num se rel eff sam size
1 2.18 0.40 0.0042 0.99 9000
2 -0.55 0.25 0.0025 0.87 9000
Quantiles
2.5% 5% 50% 95% 97.5%
1 1.4 1.51 2.18 2.83 2.976
2 -1.1 -0.97 -0.55 -0.13 -0.041
lm ():
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.6338 0.1651 9.895 1.06e-07 ***
treatU -0.5500 0.2335 -2.355 0.0336 *
Regresión lineal simple:
bayesiana:
Summary of Posterior Marginal Distributions
Moments
mean std dev num se rel eff sam size
1 0.23 0.208 0.00222 1.0 4500
2 0.42 0.072 0.00082 1.2 4500
Quantiles
2.5% 5% 50% 95% 97.5%
1 -0.18 -0.10 0.23 0.56 0.63
2 0.28 0.31 0.42 0.54 0.56
lm ():
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.23330 0.14272 1.635 0.124
mus 0.42181 0.04931 8.554 6.23e-07 ***
Modelo de 2 covariables:
bayesiano:
Summary of Posterior Marginal Distributions
Moments
mean std dev num se rel eff sam size
1 0.48 0.437 0.00520 1.3 4500
2 -0.12 0.184 0.00221 1.3 4500
3 0.40 0.083 0.00094 1.2 4500
Quantiles
2.5% 5% 50% 95% 97.5%
1 -0.41 -0.24 0.48 1.18 1.35
2 -0.48 -0.42 -0.12 0.18 0.25
3 0.23 0.26 0.40 0.53 0.56
lm ():
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.36242 0.19794 1.831 0.0901 .
treatU -0.11995 0.12688 -0.945 0.3617
mus 0.39590 0.05658 6.997 9.39e-06 ***
de donde podemos ver que los resultados son ampliamente comparables, como se esperaba con estos modelos simples y anteriores difusos. Por supuesto, también vale la pena inspeccionar los gráficos de diagnóstico de MCMC (densidad posterior, gráfico de seguimiento, correlación automática) que también proporcioné el código por encima del cual (los gráficos no se muestran).