Al responder a su pregunta "Me pregunto cómo sacar el ATE del modelo 2" en los comentarios:
γjγj=0j=1β~mβ~m
γjjATEjγj=ATEj−ATE1j=2,…,mATEjβ~+γjATE=β=1m∑mj=1ATEj=β~+(β~+γ2)+⋯+(β~+γm)m=β~+1m(γ2+⋯+γm)
Hice una simulación simple en R para verificar esto:
set.seed(1234)
time <- 4
n <-2000
trt.period <- c(2,3,4,5) #ATE=3.5
kj <- c(1,2,3,4)
intercept <- rep(rnorm(n, 1, 1), each=time)
eij <- rnorm(n*time, 0, 1.5)
trt <- rep(c(rep(0,n/2),rep(1,n/2)), each=time)
y <- intercept + trt*(rep(trt.period, n))+rep(kj,n)+eij
sim.data <- data.frame(id=rep(1:n, each=time), period=factor(rep(1:time, n)), y=y, trt=factor(trt))
library(lme4)
fit.model1 <- lmer(y~trt+(1|id), data=sim.data)
beta <- getME(fit.model1, "fixef")["trt1"]
fit.model2 <- lmer(y~trt*period + (1|id), data=sim.data)
beta_t <- getME(fit.model2, "fixef")["trt1"]
gamma_j <- getME(fit.model2, "fixef")[c("trt1:period2","trt1:period3","trt1:period4")]
results <-c(beta, beta_t+sum(gamma_j)/time)
names(results)<-c("ATE.m1", "ATE.m2")
print(results)
Y los resultados lo verifican:
ATE.m1 ATE.m2
3.549213 3.549213
No sé cómo cambiar directamente la codificación de contraste en el modelo 2 anterior, así que para ilustrar cómo se puede usar directamente una función lineal de los términos de interacción, así como cómo obtener el error estándar, utilicé el paquete multcomp:
sim.data$tp <- interaction(sim.data$trt, sim.data$period)
fit.model3 <- lmer(y~tp+ (1|id), data=sim.data)
library(multcomp)
# w= tp.1.1 + (tp.2.1-tp.2.0)+(tp.3.1-tp.3.0)+(tp.4.1-tp.4.0)
# tp.x.y=interaction effect of period x and treatment y
w <- matrix(c(0, 1,-1,1,-1,1,-1,1)/time,nrow=1)
names(w)<- names(getME(fit.model3,"fixef"))
xx <- glht(fit.model3, linfct=w)
summary(xx)
Y aquí está el resultado:
Simultaneous Tests for General Linear Hypotheses
Fit: lmer(formula = y ~ tp + (1 | id), data = sim.data)
Linear Hypotheses:
Estimate Std. Error z value Pr(>|z|)
1 == 0 3.54921 0.05589 63.51 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Adjusted p values reported -- single-step method)
wV^wT−−−−−√wV
Codificación de desviación
β~ATEATEj−ATE
sim.data$p2vsmean <- 0
sim.data$p3vsmean <- 0
sim.data$p4vsmean <- 0
sim.data$p2vsmean[sim.data$period==2 & sim.data$trt==1] <- 1
sim.data$p3vsmean[sim.data$period==3 & sim.data$trt==1] <- 1
sim.data$p4vsmean[sim.data$period==4 & sim.data$trt==1] <- 1
sim.data$p2vsmean[sim.data$period==1 & sim.data$trt==1] <- -1
sim.data$p3vsmean[sim.data$period==1 & sim.data$trt==1] <- -1
sim.data$p4vsmean[sim.data$period==1 & sim.data$trt==1] <- -1
fit.model4 <- lmer(y~trt+p2vsmean+p3vsmean+p4vsmean+ (1|id), data=sim.data)
Salida:
Fixed effects:
Estimate Std. Error t value
(Intercept) 3.48308 0.03952 88.14
trt1 3.54921 0.05589 63.51
p2vsmean -1.14774 0.04720 -24.32
p3vsmean 1.11729 0.04720 23.67
p4vsmean 3.01025 0.04720 63.77