Para responder a su pregunta: no, no puede asumir una notación fija general para el logaritmo.
Una pregunta similar se discutió recientemente en SE.Math: ¿Cuál es la diferencia entre los tres tipos de logaritmos? desde un punto de vista matemático. En general, hay diferentes anotaciones que dependen de los hábitos (Iniciar sesión10 seems of use in medical research) or language (for instance in German, Russian, French). Unfortunately, the same notation sometimes ends up representing different definitions. Quoting from the above SE.Math link:
Notation lnx (almost) unambiguously denotes the natural logarithm
logex (latin: logarithmus naturalis), or logarithm in base e.
The notation logx should be the adopted notation for the natural
logarithm, and it is so in mathematics. However, it often represents
the "most natural" depending on the field: I learned it as the
base-∗10 logarithm (log10) at school, and it is often used
this way in engineering (for instance in the definition of decibels)
Quite often, if you are not concerned with the meaning of physical units (like decibels @Matt Krause), nor interested in specific rates of change (in biostatistics, the log-ratio for fold-change often denotes the base-2 logarithm log2), it is likely that the natural logarithm (loge) is used.
For instance, in power or Box-Cox transforms (for variance stabilization), the natural logarithm appears as a limit when the exponent tends to 0.
Going back to your initial motivation, the Good-Turing Frequency Estimation, it is interesting to read The Population Frequencies of Species and the Estimation of Population Parameters, I. J. Good, Biometrika, 1953. Here, he used logarithmms in different contexts: variable transformation for variance stabilisation (mentioning Bartlett and Anscombe), sum of harmonic series, entropy. We see that he generally uses log as the natural logarithm, and once in a while in the paper specifies loge or log10, when the context requires it. For variance stabilization, or basic entropy estimation, a factor on the logarithm does not change much the result, as the outcome allows a linear change.
ln
que se considera. Sin embargo, los dos están relacionados:log(x) = ln(x) / ln(10) = ln(x) / 2.303
y la función de probabilidad de ln llega al extremo en el mismo punto que la función de probabilidad de log10 .