Específicamente, quiero saber si hay una diferencia entre lm(y ~ x1 + x2)
y glm(y ~ x1 + x2, family=gaussian)
. Creo que este caso particular de glm es igual a lm. ¿Me equivoco?
Específicamente, quiero saber si hay una diferencia entre lm(y ~ x1 + x2)
y glm(y ~ x1 + x2, family=gaussian)
. Creo que este caso particular de glm es igual a lm. ¿Me equivoco?
Respuestas:
Mientras que para la forma específica de modelo mencionada en el cuerpo de la pregunta (es decir, lm(y ~ x1 + x2)
vs glm(y ~ x1 + x2, family=gaussian)
), la regresión y los GLM son el mismo modelo, la pregunta del título hace algo un poco más general:
¿Hay alguna diferencia entre lm y glm para la familia gaussiana de glm?
A lo que la respuesta es "¡Sí!".
La razón por la que pueden ser diferentes es porque también puede especificar una función de enlace en el GLM. Esto le permite ajustar formas particulares de relación no lineal entre (o más bien su media condicional) y las variables ; Si bien también puede hacer esto , no hay necesidad de valores iniciales, a veces la convergencia es mejor (también la sintaxis es un poco más fácil).nls
Compare, por ejemplo, estos modelos (tiene R, así que supongo que puede ejecutarlos usted mismo):
x1=c(56.1, 26.8, 23.9, 46.8, 34.8, 42.1, 22.9, 55.5, 56.1, 46.9, 26.7, 33.9,
37.0, 57.6, 27.2, 25.7, 37.0, 44.4, 44.7, 67.2, 48.7, 20.4, 45.2, 22.4, 23.2,
39.9, 51.3, 24.1, 56.3, 58.9, 62.2, 37.7, 36.0, 63.9, 62.5, 44.1, 46.9, 45.4,
23.7, 36.5, 56.1, 69.6, 40.3, 26.2, 67.1, 33.8, 29.9, 25.7, 40.0, 27.5)
x2=c(12.29, 11.42, 13.59, 8.64, 12.77, 9.9, 13.2, 7.34, 10.67, 18.8, 9.84, 16.72,
10.32, 13.67, 7.65, 9.44, 14.52, 8.24, 14.14, 17.2, 16.21, 6.01, 14.23, 15.63,
10.83, 13.39, 10.5, 10.01, 13.56, 11.26, 4.8, 9.59, 11.87, 11, 12.02, 10.9, 9.5,
10.63, 19.03, 16.71, 15.11, 7.22, 12.6, 15.35, 8.77, 9.81, 9.49, 15.82, 10.94, 6.53)
y = c(1.54, 0.81, 1.39, 1.09, 1.3, 1.16, 0.95, 1.29, 1.35, 1.86, 1.1, 0.96,
1.03, 1.8, 0.7, 0.88, 1.24, 0.94, 1.41, 2.13, 1.63, 0.78, 1.55, 1.5, 0.96,
1.21, 1.4, 0.66, 1.55, 1.37, 1.19, 0.88, 0.97, 1.56, 1.51, 1.09, 1.23, 1.2,
1.62, 1.52, 1.64, 1.77, 0.97, 1.12, 1.48, 0.83, 1.06, 1.1, 1.21, 0.75)
lm(y ~ x1 + x2)
glm(y ~ x1 + x2, family=gaussian)
glm(y ~ x1 + x2, family=gaussian(link="log"))
nls(y ~ exp(b0+b1*x1+b2*x2), start=list(b0=-1,b1=0.01,b2=0.1))
Tenga en cuenta que el primer par es el mismo modelo ( ), y el segundo par es el mismo modelo ( y los ajustes son esencialmente los mismos dentro de cada par.
Entonces, en relación con la pregunta del título, puede ajustar una variedad sustancialmente más amplia de modelos gaussianos con un GLM que con una regresión.
MASS::rlm
Respuesta corta, son exactamente lo mismo:
# Simulate data:
set.seed(42)
n <- 1000
x1 <- rnorm(n, mean = 150, sd = 3)
x2 <- rnorm(n, mean = 100, sd = 2)
u <- rnorm(n)
y <- 5 + 2*x1 + 3*x2 + u
# Estimate with OLS:
reg1 <- lm(y ~ x1 + x2)
# Estimate with GLS
reg2 <- glm(y ~ x1 + x2, family=gaussian)
# Compare:
require(texreg)
screenreg(l = list(reg1, reg2))
=========================================
Model 1 Model 2
-----------------------------------------
(Intercept) 6.37 ** 6.37 **
(2.20) (2.20)
x1 1.99 *** 1.99 ***
(0.01) (0.01)
x2 3.00 *** 3.00 ***
(0.02) (0.02)
-----------------------------------------
R^2 0.99
Adj. R^2 0.99
Num. obs. 1000 1000
RMSE 1.00
AIC 2837.66
BIC 2857.29
Log Likelihood -1414.83
Deviance 991.82
=========================================
*** p < 0.001, ** p < 0.01, * p < 0.05
Respuesta más larga; La función glm se ajusta al modelo de MLE, sin embargo, debido a la suposición que hizo sobre la función de enlace (en este caso normal), termina con las estimaciones de OLS.
glm
es glm(y ~ x1 + x2, family = gaussian(link = "identity"))
.
De la respuesta de @ Repmat, el resumen del modelo es el mismo, pero los IC de los coeficientes de regresión de confint
son ligeramente diferentes entre lm
y glm
.
> confint(reg1, level=0.95)
2.5 % 97.5 %
(Intercept) 2.474742 11.526174
x1 1.971466 2.014002
x2 2.958422 3.023291
> confint(reg2, level=0.95)
Waiting for profiling to be done...
2.5 % 97.5 %
(Intercept) 2.480236 11.520680
x1 1.971492 2.013976
x2 2.958461 3.023251
distribución se usa lm
mientras que la distribución normal se usa glm
al construir los intervalos.
> beta <- summary(reg1)$coefficients[, 1]
> beta_se <- summary(reg1)$coefficients[, 2]
> cbind(`2.5%` = beta - qt(0.975, n - 3) * beta_se,
`97.5%` = beta + qt(0.975, n - 3) * beta_se) #t
2.5% 97.5%
(Intercept) 2.474742 11.526174
x1 1.971466 2.014002
x2 2.958422 3.023291
> cbind(`2.5%` = beta - qnorm(0.975)*beta_se,
`97.5%` = beta + qnorm(0.975)*beta_se) #normal
2.5% 97.5%
(Intercept) 2.480236 11.520680
x1 1.971492 2.013976
x2 2.958461 3.023251