Las diapositivas a las que enlaza son algo confusas, omiten pasos y hacen algunos errores tipográficos, pero en última instancia son correctas. Ayudará a responder la pregunta 2 primero, luego 1, y finalmente derivar la transformación simétrica .A(u)=∫u−∞1[V(θ)]1/3dθA(u)=∫u−∞1[V(θ)]1/3dθ
Pregunta 2. Estamos analizando ya que es la media de una muestra de tamaño de las variables aleatorias iid . Esta es una cantidad importante porque tomar muestras de la misma distribución y tomar la media ocurre todo el tiempo en la ciencia. Queremos saber qué tan cerca está de la verdadera media . El teorema del límite central dice que convergerá a como pero nos gustaría saber la varianza y asimetría deˉXX¯NNX1,...,XNX1,...,XNˉXX¯μμμμN→∞N→∞ˉXX¯ .
Pregunta 1. La aproximación de su serie Taylor no es incorrecta, pero debemos tener cuidado al hacer un seguimiento de vs. y las potencias de para llegar a la misma conclusión que las diapositivas. Comenzaremos con las definiciones de y los momentos centrales de y la fórmula para :ˉXX¯XiXiNNˉXX¯XiXiκ3(h(ˉX))κ3(h(X¯))
ˉX=1N∑Ni=1XiX¯=1N∑Ni=1Xi
E[Xi]=μE[Xi]=μ
V(Xi)=E[(Xi−μ)2]=σ2V(Xi)=E[(Xi−μ)2]=σ2
κ3(Xi)=E[(Xi−μ)3]κ3(Xi)=E[(Xi−μ)3]
Ahora, los momentos centrales de :ˉXX¯
E[ˉX]=1N∑Ni=1E[Xi]=1N(Nμ)=μE[X¯]=1N∑Ni=1E[Xi]=1N(Nμ)=μ
V(ˉX)=E[(ˉX−μ)2]=E[((1NN∑i=1Xi)−μ)2]=E[(1NN∑i=1(Xi−μ))2]=1N2(NE[(Xi−μ)2]+N(N−1)E[Xi−μ]E[Xj−μ])=1Nσ2V(X¯)=E[(X¯−μ)2]=E[((1N∑i=1NXi)−μ)2]=E[(1N∑i=1N(Xi−μ))2]=1N2(NE[(Xi−μ)2]+N(N−1)E[Xi−μ]E[Xj−μ])=1Nσ2
El último paso sigue desde , y . Puede que esta no haya sido la derivación más fácil de , pero es el mismo proceso que debemos hacer para encontrar y , donde separamos un producto de una suma y contamos el número de términos con potencias de diferentes variables. En el caso anterior, había términos que tenían la forma y términos de la forma .E[Xi−μ]=0E[Xi−μ]=0E[(Xi−μ)2]=σ2E[(Xi−μ)2]=σ2V(ˉX)V(X¯)κ3(ˉX)κ3(X¯)κ3(h(ˉX))κ3(h(X¯))NN(Xi−μ)2(Xi−μ)2N(N−1)N(N−1)(Xi−μ)(Xj−μ)(Xi−μ)(Xj−μ)
κ3(ˉX)=E[(ˉX−μ)3)]=E[((1NN∑i=1Xi)−μ)3]=E[(1NN∑i=1(Xi−μ))3]=1N3(NE[(Xi−μ)3]+3N(N−1)E[(Xi−μ)E[(Xj−μ)2]+N(N−1)(N−2)E[(Xi−μ)]E[(Xj−μ)]E[(Xk−μ)]=1N2E[(Xi−μ)3]=κ3(Xi)N2κ3(X¯)=E[(X¯−μ)3)]=E[((1N∑i=1NXi)−μ)3]=E[(1N∑i=1N(Xi−μ))3]=1N3(NE[(Xi−μ)3]+3N(N−1)E[(Xi−μ)E[(Xj−μ)2]+N(N−1)(N−2)E[(Xi−μ)]E[(Xj−μ)]E[(Xk−μ)]=1N2E[(Xi−μ)3]=κ3(Xi)N2
A continuación, expandiremos en una serie de Taylor como usted tiene:h(ˉX)h(X¯)
h(ˉX)=h(μ)+h′(μ)(ˉX−μ)+12h″(μ)(ˉX−μ)2+13h‴(μ)(ˉX−μ)3+...h(X¯)=h(μ)+h′(μ)(X¯−μ)+12h′′(μ)(X¯−μ)2+13h′′′(μ)(X¯−μ)3+...
E[h(ˉX)]=h(μ)+h′(μ)E[ˉX−μ]+12h″(μ)E[(ˉX−μ)2]+13h‴(μ)E[(ˉX−μ)3]+...=h(μ)+12h″(μ)σ2N+13h‴(μ)κ3(Xi)N2+...E[h(X¯)]=h(μ)+h′(μ)E[X¯−μ]+12h′′(μ)E[(X¯−μ)2]+13h′′′(μ)E[(X¯−μ)3]+...=h(μ)+12h′′(μ)σ2N+13h′′′(μ)κ3(Xi)N2+...
Con un poco más de esfuerzo, podría probar que el resto de los términos son . Finalmente, dado que , (que no es lo mismo queO(N−3)O(N−3)κ3(h(ˉX))=E[(h(ˉX)−E[h(ˉX)])3]κ3(h(X¯))=E[(h(X¯)−E[h(X¯)])3]E[(h(ˉX)−h(μ))3]E[(h(X¯)−h(μ))3] ), nuevamente hacemos un cálculo similar:
κ3(h(ˉX))=E[(h(ˉX)−E[h(ˉX)])3]=E[(h(μ)+h′(μ)(ˉX−μ)+12h″(μ)(ˉX−μ)2+O((ˉX−μ)3)−h(μ)−12h″(μ)σ2N−O(N−2))3]κ3(h(X¯))=E[(h(X¯)−E[h(X¯)])3]=E[(h(μ)+h′(μ)(X¯−μ)+12h′′(μ)(X¯−μ)2+O((X¯−μ)3)−h(μ)−12h′′(μ)σ2N−O(N−2))3]
Solo nos interesan los términos que dan como resultado el orden , y con un trabajo adicional puede demostrar que no necesita los términos " "o" "antes de tomar la tercera potencia, ya que solo darán como resultado el ordenO(N−2)O(N−2)O((ˉX−μ)3)O((X¯−μ)3)−O(N−2)−O(N−2)O(N−3)O(N−3) . Entonces, simplificando, obtenemos
κ3(h(ˉX))=E[(h′(μ)(ˉX−μ)+12h″(μ)(ˉX−μ)2−12h″(μ)σ2N))3]=E[h′(μ)3(ˉX−μ)3+18h″(μ)3(ˉX−μ)6−18h″(μ)3σ6N3+32h′(μ)2h″(μ)(ˉX−μ)4+34h′(μ)h″(μ)(ˉX−μ)5−32h′(μ)2h″(μ)(ˉX−μ)2σ2N+O(N−3)]κ3(h(X¯))=E[(h′(μ)(X¯−μ)+12h′′(μ)(X¯−μ)2−12h′′(μ)σ2N))3]=E[h′(μ)3(X¯−μ)3+18h′′(μ)3(X¯−μ)6−18h′′(μ)3σ6N3+32h′(μ)2h′′(μ)(X¯−μ)4+34h′(μ)h′′(μ)(X¯−μ)5−32h′(μ)2h′′(μ)(X¯−μ)2σ2N+O(N−3)]
Dejé algunos términos que obviamente eran en este producto. Tendrá que convencerse de que los términos y son también. Sin embargo,O(N−3)O(N−3)E[(ˉX−μ)5]E[(X¯−μ)5]E[(ˉX−μ)6]E[(X¯−μ)6]O(N−3)O(N−3)
E[(ˉX−μ)4]=E[1N4(N∑i=1(ˉX−μ))4]=1N4(NE[(Xi−μ)4]+3N(N−1)E[(Xi−μ)2]E[(Xj−μ)2]+0)=3N2σ4+O(N−3)E[(X¯−μ)4]=E[1N4(∑i=1N(X¯−μ))4]=1N4(NE[(Xi−μ)4]+3N(N−1)E[(Xi−μ)2]E[(Xj−μ)2]+0)=3N2σ4+O(N−3)
Luego distribuyendo la expectativa en nuestra ecuación paraκ3(h(ˉX))κ3(h(X¯)) , tenemos
κ3(h(ˉX))=h′(μ)3E[(ˉX−μ)3]+32h′(μ)2h″(μ)E[(ˉX−μ)4]−32h′(μ)2h″(μ)E[(ˉX−μ)2]σ2N+O(N−3)=h′(μ)3κ3(Xi)N2+92h′(μ)2h″(μ)σ4N2−32h′(μ)2h″(μ)σ4N2+O(N−3)=h′(μ)3κ3(Xi)N2+3h′(μ)2h″(μ)σ4N2+O(N−3)κ3(h(X¯))=h′(μ)3E[(X¯−μ)3]+32h′(μ)2h′′(μ)E[(X¯−μ)4]−32h′(μ)2h′′(μ)E[(X¯−μ)2]σ2N+O(N−3)=h′(μ)3κ3(Xi)N2+92h′(μ)2h′′(μ)σ4N2−32h′(μ)2h′′(μ)σ4N2+O(N−3)=h′(μ)3κ3(Xi)N2+3h′(μ)2h′′(μ)σ4N2+O(N−3)
Esto concluye la derivación de . Ahora, por fin, derivaremos la transformación simétrica .κ3(h(ˉX))κ3(h(X¯))A(u)=∫u−∞1[V(θ)]1/3dθA(u)=∫u−∞1[V(θ)]1/3dθ
Para esta transformación, es importante que sea de una distribución familiar exponencial, y en particular una familia exponencial natural (o se haya transformado en esta distribución), de la formaXiXifXi(x;θ)=h(x)exp(θx−b(θ))fXi(x;θ)=h(x)exp(θx−b(θ))
En este caso, los acumulantes de la distribución están dados por . Entonces, , y . Podemos escribir el parámetro en función de simplemente tomando el inverso de , escribiendoκk=b(k)(θ)κk=b(k)(θ)μ=b′(θ)μ=b′(θ)σ2=V(θ)=b″(θ)σ2=V(θ)=b′′(θ)κ3=b‴(θ)κ3=b′′′(θ)θθμμb′b′θ(μ)=(b′)−1(μ)θ(μ)=(b′)−1(μ) . Luego
θ′(μ)=1b″((b′)−1(μ))=1b″(θ))=1σ2θ′(μ)=1b′′((b′)−1(μ))=1b′′(θ))=1σ2
A continuación, podemos escribir la varianza como una función de , y llamar a esta función :μμˉVV¯
ˉV(μ)=V(θ(μ))=b″(θ(μ))V¯(μ)=V(θ(μ))=b′′(θ(μ))
Luego
ddμˉV(μ)=V′(θ(μ))θ′(μ)=b‴(θ)1σ2=κ3σ2ddμV¯(μ)=V′(θ(μ))θ′(μ)=b′′′(θ)1σ2=κ3σ2
Entonces, en función de , .μμκ3(μ)=ˉV′(μ)ˉV(μ)κ3(μ)=V¯′(μ)V¯(μ)
Ahora, para la transformación simétrica, queremos reducir el sesgo de haciendo para que sea . Por lo tanto, queremosh(ˉX)h(X¯)h′(μ)3κ3(Xi)N2+3h′(μ)2h″(μ)σ4N2=0h′(μ)3κ3(Xi)N2+3h′(μ)2h′′(μ)σ4N2=0h(ˉX)h(X¯)O(N−3)O(N−3)
h′(μ)3κ3(Xi)+3h′(μ)2h″(μ)σ4=0h′(μ)3κ3(Xi)+3h′(μ)2h′′(μ)σ4=0
Sustituyendo nuestras expresiones por y como funciones de , tenemos:σ2σ2κ3κ3μμ
h′(μ)3ˉV′(μ)ˉV(μ)+3h′(μ)2h″(μ)ˉV(μ)2=0h′(μ)3V¯′(μ)V¯(μ)+3h′(μ)2h′′(μ)V¯(μ)2=0
Entonces , lo que lleva a .h′(μ)3ˉV′(μ)+3h′(μ)2h″(μ)ˉV(μ)=0h′(μ)3V¯′(μ)+3h′(μ)2h′′(μ)V¯(μ)=0ddμ(h′(μ)3ˉV(μ))=0ddμ(h′(μ)3V¯(μ))=0
Una solución a esta ecuación diferencial es:
h′(μ)3ˉV(μ)=1h′(μ)3V¯(μ)=1 ,
h′(μ)=1[ˉV(μ)]1/3h′(μ)=1[V¯(μ)]1/3
Entonces, , para cualquier constante, . Esto nos da la transformación simétrica , donde es la varianza como una función de la media en una familia exponencial natural.h(μ)=∫μc1[ˉV(θ)]1/3dθcA(u)=∫u−∞1[V(θ)]1/3dθV