s ( t ) = sl o w( t ) + sh i g h( t )
sl o w( t ) = cos( 2 πF0 0t ) + cos( 2 πF1t + π3)
sh i g h( t ) = 12⋅ cos( 2 πF2t + 0.2 )
F0 0, f1Fc u tF0 0< f1< fc u tF2> fc u t
norteFs> 2 ⋅ f2Fs≫ 2 ⋅ f2
He combinado un pequeño programa Python para ilustrar algunos de los conceptos: el código es bastante horrible, pero acabo de tomar un código viejo que tenía para problemas similares. Aunque casi no hay comentarios, debería ser bastante fácil de seguir debido a los pequeños módulos. El son dos DFT / IDFT funciones; dos funciones fshiftn / fshiftp para cambiar la frecuencia de la señal i dominio DFT para filtrado; una función dftlpass para realizar el filtrado en el dominio DFT; una función zpblpass para hacer el filtrado mediante el uso de un filtro Butterworth; una función bbdftsig para formar la señal de prueba y realizar el filtrado; y finalmente una pequeña función tramapara trazar las señales. Al final del guión, se establecen los diferentes parámetros y se hacen las diferentes figuras.
"""
Test of DFT versus scipy.signal.butter filtering with respect to
signal reconstruction.
"""
# import ############################################################ import #
import matplotlib as mpl; mpl.rcParams['backend'] = 'Agg'
import matplotlib.pyplot as mplpp
import matplotlib.mlab as mplml
import numpy as np
import scipy.signal as sps
# initialize #################################################### initialize #
try:
mpl.rc('text', usetex=False)
mpl.rc('font', family='serif')
mpl.rc('font', serif='STIXGeneral')
mpl.rc('font', size=8)
except AttributeError:
None
# dft ################################################################## dft #
def dft(xt, fs, t0):
N, d = len(xt), -2j*np.pi/len(xt)
w = np.arange(N, dtype=np.float).reshape((N,1))
c = np.exp(d*t0*fs*w)
W = np.exp(d*np.dot(w,np.transpose(w)))
xf = np.multiply(c,np.dot(W,xt)) / float(N)
f = w*fs/float(N)
return xf, f
# idft ################################################################ idft #
def idft( X, FS, T0 ):
N, d = len(X), 2j*np.pi/len(X)
w = np.arange(N, dtype=float).reshape((N,1))
cc = np.exp(d*T0*FS*w)
Wc = np.exp(d*np.dot(w, np.transpose(w)))
Y = np.dot(Wc, np.multiply(cc, X))
return Y
# fshiftn ########################################################## fshiftn #
def fshiftn( xf, f ):
assert type(f) == np.ndarray, "f must be a np.ndarray"
assert f.shape[1] == 1, "f must be a column array"
assert xf.shape[1] == 1, "xf must be a column array"
assert sum(f<0) == 0, "All frequency components must be 0 or positive"
# Determine sampling rate, tolerance, and allocate output array
fs, tol = len(f)*(np.abs(f[1,0]-f[0,0])), 1.E-2
fshift = np.zeros((len(f),1), dtype=float)
xfshift = np.zeros((len(f),1), dtype=complex)
# Determine index where f > fs/2
Nm = np.floor(len(f)/2.0)
Np = np.floor((len(f)-1.0)/2.0)
# Compute output frequency array such that -fs/2 <= f < fs/2 and the
# corresponding Fourier coefficients
fshift[:Nm,0] = f[Np+1:,0] - fs
fshift[Nm,0] = f[0,0]
fshift[Nm+1:,0] = f[1:Np+1,0]
xfshift[:Nm,0] = xf[Np+1:,0]
xfshift[Nm,0] = xf[0,0]
xfshift[Nm+1:,0] = xf[1:Np+1,0]
return xfshift, fshift
# fshiftp ########################################################## fshiftp #
def fshiftp(xf, f):
assert type(f) == np.ndarray, "f must be a np.ndarray"
assert f.shape[1] == 1, "f must be a column array"
assert xf.shape[1] == 1, "xf must be a column array"
assert sum(f<0) > 0, "Some input frequencies must be negative"
# Determine sampling rate, tolerance, and allocate output array
fs, tol = len(f)*(np.abs(f[1,0]-f[0,0])), 1.E-2
fshift = np.zeros((len(f),1), dtype=float)
xfshift = np.zeros((len(f),1), dtype=complex)
# Determine index where f > fs/2
#Nx = np.floor((len(f)+1+tol)/2)
Nm = np.floor(len(f)/2.0)
Np = np.floor((len(f)-1.0)/2.0)
# Compute output frequency array such that -fs/2 <= f < fs/2 and the
# corresponding Fourier coefficients
fshift[Np+1:,0] = f[:Nm:,0] + fs
fshift[0,0] = f[Nm,0]
fshift[1:Np+1:,0] = f[Nm+1:,0]
xfshift[Np+1:,0] = xf[:Nm:,0]
xfshift[0,0] = xf[Nm,0]
xfshift[1:Np+1:,0] = xf[Nm+1:,0]
return xfshift, fshift
# dftlpass ######################################################## dftlpass #
def dftlpass(xt, fs, fcut):
# Perform Discrete Fourier Transform
xf, f = dft(xt, fs, 0.0)
# Shift frequencies to -fs/2 <= f < fs/2 ... and coefficients
xfshift, fshift = fshiftn(xf, f)
# Perform filtration
xfshift = xfshift * (np.abs(fshift) <= fcut)
# Re-shift frequencies to 0 <= f < fs ... and coefficients
xfrecon, frecon = fshiftp(xfshift, fshift)
# Perform inverse Discrete Fourier Transform
yt = idft(xfrecon, fs, 0.0)
return yt.real
# zpblpass ######################################################## zpblpass #
def zpblpass(xn, fcal, fs, fcut):
bz, az = sps.butter(5, fcut/(fs/2))
# Gain calibration
Ncal = np.max([np.int(20*fs/fcal), 30000])
Nguard = np.int(0.1*Ncal)
t = np.arange(Ncal) / fs
x0_cal = 1.0 * np.cos(2*np.pi*fcal*t)
yi_cal = sps.filtfilt(bz, az, 2.0*x0_cal*np.cos(2*np.pi*fcal*t))
k = 1.0/np.mean(yi_cal[Nguard:Ncal-Nguard])
# Scaled output
yn = k * sps.filtfilt(bz, az, xn)
return yn
# bbdftsig ######################################################## bbdftsig #
def bbdftsig(f0, f1, f2, fcut, fs, N):
t = np.arange(N).reshape((N,1)) / fs
s0 = np.sin(2*np.pi*f0*t)
s1 = np.sin(2*np.pi*f1*t + 0.2)
s2 = 0.7 * np.sin(2*np.pi*f2*t + np.pi/3.0)
slow = s0 + s1
s = slow + s2
sf = dftlpass(s, fs, fcut)
sfdftv = sf.reshape((N))
sv = s.reshape((N))
slowv = slow.reshape((N))
sv = s.reshape((N))
sfzpbv = zpblpass(sv, f1, fs, fcut)
#sfzpbv = sfzpb.reshape((N))
return sv, slowv, sfdftv, sfzpbv
# plotsigs ######################################################## plotsigs #
def plotsigs(s, slow, sfdft, sfzpb, Nstart, Nstop, fname):
n = np.arange(s.shape[0])
# Plot results
mplpp.figure(1, (5.0,2.25))
mplpp.clf()
mplpp.plot(n[Nstart:Nstop], s[Nstart:Nstop], 'm-',
n[Nstart:Nstop:4], s[Nstart:Nstop:4], 'mx',
n[Nstart:Nstop], slow[Nstart:Nstop], 'g-',
n[Nstart:Nstop:10], slow[Nstart:Nstop:10], 'gx',
n[Nstart:Nstop], sfdft[Nstart:Nstop], 'r-',
n[Nstart:Nstop:15], sfdft[Nstart:Nstop:15], 'rx',
n[Nstart:Nstop], sfzpb[Nstart:Nstop], 'b-',
linewidth=1.5)
mplpp.legend([r'$s$', r'$s$', r'$s_{\rm low}$', r'$s_{\rm low}$',
r'DFT', r'DFT', r'ZPB'], loc='upper right')
mplpp.ylabel(r'Signal')
mplpp.xlabel(r'$n$')
#mplpp.axis([-10.0, 10.0, 1.0E-2, 1.0E2])
mplpp.grid(True)
mplpp.savefig(fname, dpi=600,
bbox_inches='tight', pad_inches=0.05)
mplpp.close()
# __main__ ######################################################## __main__ #
if __name__ == '__main__':
# Initialize
f0 = 3.0
f1 = 11.5
f2 = 20.0
fcut = 15.0
fs = 1000.0
N = 5000
s, slow, sfdft, sfzpb = bbdftsig(f0, f1, f2, fcut, fs, N)
n = np.arange(s.shape[0])
# Fig. 1: full data set
Nstart = 0
Nstop = N
fname = 'full.pdf'
plotsigs(s, slow, sfdft, sfzpb, Nstart, Nstop, fname)
# Fig. 2: beginning
Nstart = 0
Nstop = 150
fname = 'beginning.pdf'
plotsigs(s, slow, sfdft, sfzpb, Nstart, Nstop, fname)
# Fig. 3: middle
Nstart = np.floor(N/2.0) - 75
Nstop = Nstart + 100
fname = 'middle.pdf'
plotsigs(s, slow, sfdft, sfzpb, Nstart, Nstop, fname)
# Fig. 4: ending
Nstart = N - 150
Nstop = N
fname = 'ending.pdf'
plotsigs(s, slow, sfdft, sfzpb, Nstart, Nstop, fname)
norte= 5000Fs= 1000Fs/ N= 0.2F0 0,f1,f2F0 0= 3F1= 11F2= 21Fc u t= 15
ssl o wsl o wF1. Como es bastante típico para este tipo de procesamiento, tenemos algunas diferencias al principio y al final de la secuencia debido a los efectos de borde y al acuerdo razonablemente bueno entre ambos tipos de filtrado en la sección central.
F1F1= 11.5
sl o w
En conclusión, es posible utilizar el filtrado directo forzando los coeficientes de Fourier a cero, lo que también se hace a veces en la detección de compresión para reducir el soporte de una señal para forzar la dispersión en una señal. Sin embargo, hay consecuencias de esto como errores aumentados en particular en los bordes de la señal. Además, lo anterior es un mejor caso en el que toda la señal se trata como una secuencia. Si la señal debe dividirse en marcos de tiempo, se complica ya que entonces debemos considerar algunas técnicas de ventanas u otras técnicas para garantizar la continuidad de la señal entre cuadros. Por lo tanto, mi consejo es similar a algunas de las otras publicaciones al recomendar el uso normal de Butterworth / Elliptic / ... o cualquier filtro.