tl; dr Informaron un número de condición, no necesariamente el número de condición correcto para la matriz, porque hay una diferencia.
Esto es específico de la matriz y del vector del lado derecho. Si nos fijamos en la documentación*getrs
, dice que el error de reenvío es
Aquícond(A,x)no es exactamente el número de condición habitualκ∞(A), sino más bien
cond(A,x)=‖| A - 1
∥x−x0∥∞∥x∥∞≲cond(A,x)u≤cond(A)u.
cond(A,x)κ∞(A)
(Aquí dentro de la norma, estos son valores absolutos por componentes). Ver, por ejemplo,
refinamiento iterativo para sistemas lineales y LAPACKpor Higham, o la
precisión y estabilidad de algoritmos numéricos deHigham(7.2).
cond(A,x)=∥|A−1||A||x|∥∞∥x∥∞,cond(A)=∥|A−1||A|∥.
Para su ejemplo, tomé un operador diferencial pseudoespectral para un problema similar con , y de hecho hay una gran diferencia entre ‖ | A - 1 | El | A | ‖ Y κ ∞ ( A ) , calculé 7 × 10 3 y 2.6 × 10 7n=128∥|A−1||A|∥κ∞(A)7×1032.6×107, que es suficiente para explicar la observación de que esto sucede para todos los lados derechos, porque los órdenes de magnitud coinciden aproximadamente con lo que se ve en la Tabla 3.1 (3-4 órdenes de mejores errores). Esto no funciona cuando intento la misma por sólo una matriz mal condicionado al azar, por lo que tiene que ser una propiedad de .A
Un ejemplo explícito para el que los dos números de condición no coinciden, que tomé de Higham (7.17, p.124), debido a Kahan es
Otro ejemplo que encontré es solo la matriz de Vandermonde simpleconbaleatorio. Paséy algunas otras matrices mal acondicionadas también producen este tipo de resultado, comoy.
⎛⎝⎜2−11−1ϵϵ1ϵϵ⎞⎠⎟,⎛⎝⎜2+2ϵ−ϵϵ⎞⎠⎟.
[1:10]
bMatrixDepot.jl
triw
moler
Esencialmente, lo que está sucediendo es que cuando analiza la estabilidad de resolver sistemas lineales con respecto a las perturbaciones, primero debe especificar qué perturbaciones está considerando. Al resolver sistemas lineales con LAPACK, este error considera las perturbaciones de componentes en , pero no las perturbaciones en b . Por lo tanto, esto es diferente de lo habitual κ ( A ) = ‖ A - 1 ‖ ‖ A ‖ , que considera las perturbaciones normales en A y b .Abκ(A)=∥A−1∥∥A∥Ab
O(u)κ(A)≪1/uκ(A)u
?getrs
(A + E)x = b
EAbb
cond(A,x)≈cond(A)≪κ(A).
function main2(m=128)
A = matrixdepot("chebspec", m)^2
A[1,:] = A[end,:] = 0
A[1,1] = A[end,end] = 1
best, worst = Inf, -Inf
for k=1:2^5
b = randn(m)
x = A \ b
x_exact = Float64.(big.(A) \ big.(b))
err = norm(x - x_exact, Inf) / norm(x_exact, Inf)
best, worst = min(best, err), max(worst, err)
end
@printf "Best relative error: %.3e\n" best
@printf "Worst relative error: %.3e\n" worst
@printf "Predicted error κ(A)*ε: %.3e\n" cond(A, Inf)*eps()
@printf "Predicted error cond(A)*ε: %.3e\n" norm(abs.(inv(A))*abs.(A), Inf)*eps()
end
julia> main2()
Best relative error: 2.156e-14
Worst relative error: 2.414e-12
Predicted error κ(A)*ε: 8.780e-09
Predicted error cond(A)*ε: 2.482e-12
cond(A,x)≪cond(A)≈κ(A).
A1:10xcond(A,x)κ(A)xxi=iaa
function main4(m=10)
A = matrixdepot("vand", m)
lu = lufact(A)
lu_big = lufact(big.(A))
AA = abs.(inv(A))*abs.(A)
for k=1:12
# b = randn(m) # good case
b = (1:m).^(k-1) # worst case
x, x_exact = lu \ b, lu_big \ big.(b)
err = norm(x - x_exact, Inf) / norm(x_exact, Inf)
predicted = norm(AA*abs.(x), Inf)/norm(x, Inf)*eps()
@printf "relative error[%2d] = %.3e (predicted cond(A,x)*ε = %.3e)\n" k err predicted
end
@printf "predicted κ(A)*ε = %.3e\n" cond(A)*eps()
@printf "predicted cond(A)*ε = %.3e\n" norm(AA, Inf)*eps()
end
Caso promedio (casi 9 órdenes de magnitud mejor error):
julia> T.main4()
relative error[1] = 6.690e-11 (predicted cond(A,x)*ε = 2.213e-10)
relative error[2] = 6.202e-11 (predicted cond(A,x)*ε = 2.081e-10)
relative error[3] = 2.975e-11 (predicted cond(A,x)*ε = 1.113e-10)
relative error[4] = 1.245e-11 (predicted cond(A,x)*ε = 6.126e-11)
relative error[5] = 4.820e-12 (predicted cond(A,x)*ε = 3.489e-11)
relative error[6] = 1.537e-12 (predicted cond(A,x)*ε = 1.729e-11)
relative error[7] = 4.885e-13 (predicted cond(A,x)*ε = 8.696e-12)
relative error[8] = 1.565e-13 (predicted cond(A,x)*ε = 4.446e-12)
predicted κ(A)*ε = 4.677e-04
predicted cond(A)*ε = 1.483e-05
a=1,…,12
julia> T.main4()
relative error[ 1] = 0.000e+00 (predicted cond(A,x)*ε = 6.608e-13)
relative error[ 2] = 1.265e-13 (predicted cond(A,x)*ε = 3.382e-12)
relative error[ 3] = 5.647e-13 (predicted cond(A,x)*ε = 1.887e-11)
relative error[ 4] = 8.895e-74 (predicted cond(A,x)*ε = 1.127e-10)
relative error[ 5] = 4.199e-10 (predicted cond(A,x)*ε = 7.111e-10)
relative error[ 6] = 7.815e-10 (predicted cond(A,x)*ε = 4.703e-09)
relative error[ 7] = 8.358e-09 (predicted cond(A,x)*ε = 3.239e-08)
relative error[ 8] = 1.174e-07 (predicted cond(A,x)*ε = 2.310e-07)
relative error[ 9] = 3.083e-06 (predicted cond(A,x)*ε = 1.700e-06)
relative error[10] = 1.287e-05 (predicted cond(A,x)*ε = 1.286e-05)
relative error[11] = 3.760e-10 (predicted cond(A,x)*ε = 1.580e-09)
relative error[12] = 3.903e-10 (predicted cond(A,x)*ε = 1.406e-09)
predicted κ(A)*ε = 4.677e-04
predicted cond(A)*ε = 1.483e-05
A=⎛⎝⎜⎜⎜000ϵ100001000010⎞⎠⎟⎟⎟.
∥A∥=1∥A−1∥=ϵ−1κ∞(A)=ϵ−1|A−1|=A−1=|A|−1cond(A)=1Ax=bκ∞(A)
cond(A)≪κ(A)
A = matrixdepot("kahan", 48)
κ, c = cond(A, Inf), norm(abs.(inv(A))*abs.(A), Inf)
@printf "κ=%.3e c=%.3e ratio=%g\n" κ c (c/κ)
κ=8.504e+08 c=4.099e+06 ratio=0.00482027