Respuestas:
Puedes usar una expresión generadora :
>>> dicts = [
... { "name": "Tom", "age": 10 },
... { "name": "Mark", "age": 5 },
... { "name": "Pam", "age": 7 },
... { "name": "Dick", "age": 12 }
... ]
>>> next(item for item in dicts if item["name"] == "Pam")
{'age': 7, 'name': 'Pam'}
Si necesita manejar el elemento que no está allí, puede hacer lo que el usuario Matt sugirió en su comentario y proporcionar un valor predeterminado utilizando una API ligeramente diferente:
next((item for item in dicts if item["name"] == "Pam"), None)
Y para encontrar el índice del elemento, en lugar del elemento en sí, puede enumerar () la lista:
next((i for i, item in enumerate(dicts) if item["name"] == "Pam"), None)
[item for item in dicts if item["name"] == "Pam"][0]
?
enumerate()
a generar un índice de ejecución: next(i for i, item in enumerate(dicts) if item["name"] == "Pam")
.
Esto me parece la forma más pitónica:
people = [
{'name': "Tom", 'age': 10},
{'name': "Mark", 'age': 5},
{'name': "Pam", 'age': 7}
]
filter(lambda person: person['name'] == 'Pam', people)
resultado (devuelto como una lista en Python 2):
[{'age': 7, 'name': 'Pam'}]
Nota: En Python 3, se devuelve un objeto de filtro. Entonces la solución python3 sería:
list(filter(lambda person: person['name'] == 'Pam', people))
len()
, list()
primero debe invocar el resultado. O: stackoverflow.com/questions/19182188/…
r
is alist
next(filter(lambda x: x['name'] == 'Pam', dicts))
La respuesta de @ Frédéric Hamidi es genial. En Python 3.x, la sintaxis de .next()
cambió ligeramente. Por lo tanto, una ligera modificación:
>>> dicts = [
{ "name": "Tom", "age": 10 },
{ "name": "Mark", "age": 5 },
{ "name": "Pam", "age": 7 },
{ "name": "Dick", "age": 12 }
]
>>> next(item for item in dicts if item["name"] == "Pam")
{'age': 7, 'name': 'Pam'}
Como se menciona en los comentarios de @Matt, puede agregar un valor predeterminado como tal:
>>> next((item for item in dicts if item["name"] == "Pam"), False)
{'name': 'Pam', 'age': 7}
>>> next((item for item in dicts if item["name"] == "Sam"), False)
False
>>>
Puedes usar una lista de comprensión :
def search(name, people):
return [element for element in people if element['name'] == name]
people = [
{'name': "Tom", 'age': 10},
{'name': "Mark", 'age': 5},
{'name': "Pam", 'age': 7}
]
def search(name):
for p in people:
if p['name'] == name:
return p
search("Pam")
def search(list, key, value): for item in list: if item[key] == value: return item
Probé varios métodos para revisar una lista de diccionarios y devolver los diccionarios donde la clave x tiene un cierto valor.
Resultados:
Todas las pruebas realizadas con Python 3.6 .4, W7x64.
from random import randint
from timeit import timeit
list_dicts = []
for _ in range(1000): # number of dicts in the list
dict_tmp = {}
for i in range(10): # number of keys for each dict
dict_tmp[f"key{i}"] = randint(0,50)
list_dicts.append( dict_tmp )
def a():
# normal iteration over all elements
for dict_ in list_dicts:
if dict_["key3"] == 20:
pass
def b():
# use 'generator'
for dict_ in (x for x in list_dicts if x["key3"] == 20):
pass
def c():
# use 'list'
for dict_ in [x for x in list_dicts if x["key3"] == 20]:
pass
def d():
# use 'filter'
for dict_ in filter(lambda x: x['key3'] == 20, list_dicts):
pass
Resultados:
1.7303 # normal list iteration
1.3849 # generator expression
1.3158 # list comprehension
7.7848 # filter
Para agregar solo un poquito a @ FrédéricHamidi.
En caso de que no esté seguro de que una clave esté en la lista de dictados, algo como esto ayudaría:
next((item for item in dicts if item.get("name") and item["name"] == "Pam"), None)
item.get("name") == "Pam"
¿Alguna vez has probado el paquete de pandas? Es perfecto para este tipo de tarea de búsqueda y también optimizado.
import pandas as pd
listOfDicts = [
{"name": "Tom", "age": 10},
{"name": "Mark", "age": 5},
{"name": "Pam", "age": 7}
]
# Create a data frame, keys are used as column headers.
# Dict items with the same key are entered into the same respective column.
df = pd.DataFrame(listOfDicts)
# The pandas dataframe allows you to pick out specific values like so:
df2 = df[ (df['name'] == 'Pam') & (df['age'] == 7) ]
# Alternate syntax, same thing
df2 = df[ (df.name == 'Pam') & (df.age == 7) ]
He agregado un poco de evaluación comparativa a continuación para ilustrar los tiempos de ejecución más rápidos de los pandas a mayor escala, es decir, más de 100k entradas:
setup_large = 'dicts = [];\
[dicts.extend(({ "name": "Tom", "age": 10 },{ "name": "Mark", "age": 5 },\
{ "name": "Pam", "age": 7 },{ "name": "Dick", "age": 12 })) for _ in range(25000)];\
from operator import itemgetter;import pandas as pd;\
df = pd.DataFrame(dicts);'
setup_small = 'dicts = [];\
dicts.extend(({ "name": "Tom", "age": 10 },{ "name": "Mark", "age": 5 },\
{ "name": "Pam", "age": 7 },{ "name": "Dick", "age": 12 }));\
from operator import itemgetter;import pandas as pd;\
df = pd.DataFrame(dicts);'
method1 = '[item for item in dicts if item["name"] == "Pam"]'
method2 = 'df[df["name"] == "Pam"]'
import timeit
t = timeit.Timer(method1, setup_small)
print('Small Method LC: ' + str(t.timeit(100)))
t = timeit.Timer(method2, setup_small)
print('Small Method Pandas: ' + str(t.timeit(100)))
t = timeit.Timer(method1, setup_large)
print('Large Method LC: ' + str(t.timeit(100)))
t = timeit.Timer(method2, setup_large)
print('Large Method Pandas: ' + str(t.timeit(100)))
#Small Method LC: 0.000191926956177
#Small Method Pandas: 0.044392824173
#Large Method LC: 1.98827004433
#Large Method Pandas: 0.324505090714
names = [{'name':'Tom', 'age': 10}, {'name': 'Mark', 'age': 5}, {'name': 'Pam', 'age': 7}]
resultlist = [d for d in names if d.get('name', '') == 'Pam']
first_result = resultlist[0]
Esta es una forma ...
Puede lograr esto con el uso del filtro y los siguientes métodos en Python.
filter
El método filtra la secuencia dada y devuelve un iterador.
next
El método acepta un iterador y devuelve el siguiente elemento de la lista.
Para que pueda encontrar el elemento,
my_dict = [
{"name": "Tom", "age": 10},
{"name": "Mark", "age": 5},
{"name": "Pam", "age": 7}
]
next(filter(lambda obj: obj.get('name') == 'Pam', my_dict), None)
y la salida es,
{'name': 'Pam', 'age': 7}
Nota: El código anterior volverá en None
caso de que no se encuentre el nombre que estamos buscando.
Mi primer pensamiento sería que tal vez quieras considerar crear un diccionario de estos diccionarios ... si, por ejemplo, lo estuvieras buscando más de un pequeño número de veces.
Sin embargo, eso podría ser una optimización prematura. Qué estaría mal con:
def get_records(key, store=dict()):
'''Return a list of all records containing name==key from our store
'''
assert key is not None
return [d for d in store if d['name']==key]
dicts=[
{"name": "Tom", "age": 10},
{"name": "Mark", "age": 5},
{"name": "Pam", "age": 7}
]
from collections import defaultdict
dicts_by_name=defaultdict(list)
for d in dicts:
dicts_by_name[d['name']]=d
print dicts_by_name['Tom']
#output
#>>>
#{'age': 10, 'name': 'Tom'}
Puedes probar esto:
''' lst: list of dictionaries '''
lst = [{"name": "Tom", "age": 10}, {"name": "Mark", "age": 5}, {"name": "Pam", "age": 7}]
search = raw_input("What name: ") #Input name that needs to be searched (say 'Pam')
print [ lst[i] for i in range(len(lst)) if(lst[i]["name"]==search) ][0] #Output
>>> {'age': 7, 'name': 'Pam'}
Aquí hay una comparación usando iteración a través de la lista, usando filtro + lambda o refactorizando (si es necesario o válido para su caso) su código para dictar dictados en lugar de la lista de dictados
import time
# Build list of dicts
list_of_dicts = list()
for i in range(100000):
list_of_dicts.append({'id': i, 'name': 'Tom'})
# Build dict of dicts
dict_of_dicts = dict()
for i in range(100000):
dict_of_dicts[i] = {'name': 'Tom'}
# Find the one with ID of 99
# 1. iterate through the list
lod_ts = time.time()
for elem in list_of_dicts:
if elem['id'] == 99999:
break
lod_tf = time.time()
lod_td = lod_tf - lod_ts
# 2. Use filter
f_ts = time.time()
x = filter(lambda k: k['id'] == 99999, list_of_dicts)
f_tf = time.time()
f_td = f_tf- f_ts
# 3. find it in dict of dicts
dod_ts = time.time()
x = dict_of_dicts[99999]
dod_tf = time.time()
dod_td = dod_tf - dod_ts
print 'List of Dictionries took: %s' % lod_td
print 'Using filter took: %s' % f_td
print 'Dict of Dicts took: %s' % dod_td
Y la salida es esta:
List of Dictionries took: 0.0099310874939
Using filter took: 0.0121960639954
Dict of Dicts took: 4.05311584473e-06
Conclusión: Claramente, tener un diccionario de dictados es la forma más eficiente de poder buscar en esos casos, donde sabe que buscará solo por identificación. Curiosamente, usar filtro es la solución más lenta.
Tienes que revisar todos los elementos de la lista. ¡No hay un atajo!
A menos que en otro lugar mantenga un diccionario de los nombres que apuntan a los elementos de la lista, pero luego debe ocuparse de las consecuencias de que aparezca un elemento de su lista.
Encontré este hilo cuando estaba buscando una respuesta a la misma pregunta. Si bien me doy cuenta de que es una respuesta tardía, pensé en contribuir en caso de que sea útil para alguien más:
def find_dict_in_list(dicts, default=None, **kwargs):
"""Find first matching :obj:`dict` in :obj:`list`.
:param list dicts: List of dictionaries.
:param dict default: Optional. Default dictionary to return.
Defaults to `None`.
:param **kwargs: `key=value` pairs to match in :obj:`dict`.
:returns: First matching :obj:`dict` from `dicts`.
:rtype: dict
"""
rval = default
for d in dicts:
is_found = False
# Search for keys in dict.
for k, v in kwargs.items():
if d.get(k, None) == v:
is_found = True
else:
is_found = False
break
if is_found:
rval = d
break
return rval
if __name__ == '__main__':
# Tests
dicts = []
keys = 'spam eggs shrubbery knight'.split()
start = 0
for _ in range(4):
dct = {k: v for k, v in zip(keys, range(start, start+4))}
dicts.append(dct)
start += 4
# Find each dict based on 'spam' key only.
for x in range(len(dicts)):
spam = x*4
assert find_dict_in_list(dicts, spam=spam) == dicts[x]
# Find each dict based on 'spam' and 'shrubbery' keys.
for x in range(len(dicts)):
spam = x*4
assert find_dict_in_list(dicts, spam=spam, shrubbery=spam+2) == dicts[x]
# Search for one correct key, one incorrect key:
for x in range(len(dicts)):
spam = x*4
assert find_dict_in_list(dicts, spam=spam, shrubbery=spam+1) is None
# Search for non-existent dict.
for x in range(len(dicts)):
spam = x+100
assert find_dict_in_list(dicts, spam=spam) is None
La mayoría (si no todas) las implementaciones propuestas aquí tienen dos defectos:
Una propuesta actualizada:
def find_first_in_list(objects, **kwargs):
return next((obj for obj in objects if
len(set(obj.keys()).intersection(kwargs.keys())) > 0 and
all([obj[k] == v for k, v in kwargs.items() if k in obj.keys()])),
None)
Quizás no sea el más pitónico, pero al menos un poco más seguro.
Uso:
>>> obj1 = find_first_in_list(list_of_dict, name='Pam', age=7)
>>> obj2 = find_first_in_list(list_of_dict, name='Pam', age=27)
>>> obj3 = find_first_in_list(list_of_dict, name='Pam', address='nowhere')
>>>
>>> print(obj1, obj2, obj3)
{"name": "Pam", "age": 7}, None, {"name": "Pam", "age": 7}
La esencia .