Amo este problema Es una pregunta clásica de la entrevista y, dependiendo de cómo lo piense, terminará obteniendo mejores y mejores soluciones. Ciertamente es posible hacer esto en un tiempo mejor que O (n 2 ), y he enumerado tres formas diferentes en las que puede pensar sobre el problema aquí. ¡Espero que esto responda tu pregunta!
Primero, la solución de divide y vencerás. Veamos si podemos resolver esto dividiendo la entrada a la mitad, resolviendo el problema en cada subconjunto y luego combinando los dos. Resulta que en realidad podemos hacer esto, ¡y podemos hacerlo de manera eficiente! La intuición es la siguiente. Si tenemos un solo día, la mejor opción es comprar ese día y luego venderlo el mismo día sin fines de lucro. De lo contrario, divida la matriz en dos mitades. Si pensamos en cuál podría ser la respuesta óptima, debe estar en uno de tres lugares:
- El par de compra / venta correcto ocurre completamente dentro de la primera mitad.
- El par de compra / venta correcto ocurre completamente dentro de la segunda mitad.
- El par de compra / venta correcto ocurre en ambas mitades: compramos en la primera mitad y luego vendemos en la segunda mitad.
Podemos obtener los valores para (1) y (2) invocando recursivamente nuestro algoritmo en la primera y segunda mitades. Para la opción (3), la forma de obtener el mayor beneficio sería comprar en el punto más bajo en la primera mitad y vender en el punto más alto en la segunda mitad. Podemos encontrar los valores mínimos y máximos en las dos mitades simplemente haciendo un escaneo lineal simple sobre la entrada y encontrando los dos valores. Esto nos da un algoritmo con la siguiente recurrencia:
T(1) <= O(1)
T(n) <= 2T(n / 2) + O(n)
Usando el Teorema Maestro para resolver la recurrencia, encontramos que esto se ejecuta en tiempo O (n lg n) y usará espacio O (lg n) para las llamadas recursivas. ¡Acabamos de superar la ingenua solución O (n 2 )!
¡Pero espera! Podemos hacer mucho mejor que esto. Tenga en cuenta que la única razón por la que tenemos un término O (n) en nuestra recurrencia es que tuvimos que escanear toda la entrada tratando de encontrar los valores mínimo y máximo en cada mitad. Como ya estamos explorando recursivamente cada mitad, ¡tal vez podamos hacerlo mejor si la recursión también devuelve los valores mínimos y máximos almacenados en cada mitad! En otras palabras, nuestra recursión devuelve tres cosas:
- Los tiempos de compra y venta para maximizar las ganancias.
- El valor mínimo general en el rango.
- El valor máximo global en el rango.
Estos dos últimos valores se pueden calcular de forma recursiva utilizando una recursión directa que podemos ejecutar al mismo tiempo que la recursividad para calcular (1):
- Los valores máximo y mínimo de un rango de un solo elemento son solo ese elemento.
- Los valores máximo y mínimo de un rango de elementos múltiples se pueden encontrar dividiendo la entrada a la mitad, encontrando los valores máximo y mínimo de cada mitad, luego tomando sus respectivos valores máximo y mínimo.
Si usamos este enfoque, nuestra relación de recurrencia es ahora
T(1) <= O(1)
T(n) <= 2T(n / 2) + O(1)
¡Usar el Teorema maestro aquí nos da un tiempo de ejecución de O (n) con espacio O (lg n), que es incluso mejor que nuestra solución original!
Pero espere un minuto, ¡podemos hacerlo aún mejor que esto! Pensemos en resolver este problema usando programación dinámica. La idea será pensar en el problema de la siguiente manera. Supongamos que conocemos la respuesta al problema después de mirar los primeros k elementos. ¿Podríamos usar nuestro conocimiento del elemento st (k + 1), combinado con nuestra solución inicial, para resolver el problema de los primeros elementos (k + 1)? Si es así, podríamos poner en marcha un gran algoritmo resolviendo el problema para el primer elemento, luego los dos primeros, luego los primeros tres, etc. hasta que lo hayamos calculado para los primeros n elementos.
Pensemos en cómo hacer esto. Si solo tenemos un elemento, ya sabemos que tiene que ser el mejor par de compra / venta. Ahora suponga que conocemos la mejor respuesta para los primeros k elementos y observe el elemento (k + 1) st. Entonces, la única forma en que este valor puede crear una solución mejor que la que teníamos para los primeros k elementos es si la diferencia entre el más pequeño de los primeros k elementos y ese nuevo elemento es mayor que la mayor diferencia que hemos calculado hasta ahora. Supongamos que a medida que avanzamos por los elementos, hacemos un seguimiento de dos valores: el valor mínimo que hemos visto hasta ahora y el beneficio máximo que podríamos obtener con solo los primeros k elementos. Inicialmente, el valor mínimo que hemos visto hasta ahora es el primer elemento, y el beneficio máximo es cero. Cuando vemos un nuevo elemento, primero actualizamos nuestro beneficio óptimo calculando cuánto ganaríamos comprando al precio más bajo visto hasta ahora y vendiendo al precio actual. Si esto es mejor que el valor óptimo que hemos calculado hasta ahora, entonces actualizamos la solución óptima para que sea este nuevo beneficio. A continuación, actualizamos el elemento mínimo visto hasta ahora como el mínimo del elemento más pequeño actual y el nuevo elemento.
Como en cada paso solo hacemos O (1) trabajo y estamos visitando cada uno de los n elementos exactamente una vez, ¡esto toma O (n) tiempo para completar! Además, solo utiliza O (1) almacenamiento auxiliar. ¡Esto es tan bueno como hemos llegado hasta ahora!
Como ejemplo, en sus entradas, así es como podría ejecutarse este algoritmo. Los números entre cada uno de los valores de la matriz corresponden a los valores que posee el algoritmo en ese punto. En realidad, no almacenaría todo esto (¡requeriría memoria O (n)!), Pero es útil ver evolucionar el algoritmo:
5 10 4 6 7
min 5 5 4 4 4
best (5,5) (5,10) (5,10) (5,10) (5,10)
Respuesta: (5, 10)
5 10 4 6 12
min 5 5 4 4 4
best (5,5) (5,10) (5,10) (5,10) (4,12)
Respuesta: (4, 12)
1 2 3 4 5
min 1 1 1 1 1
best (1,1) (1,2) (1,3) (1,4) (1,5)
Respuesta: (1, 5)
¿Podemos hacerlo mejor ahora? Lamentablemente, no en un sentido asintótico. Si usamos menos del tiempo O (n), no podemos ver todos los números en entradas grandes y, por lo tanto, no podemos garantizar que no perderemos la respuesta óptima (podríamos simplemente "ocultarla" en los elementos que no miró) Además, no podemos usar menos de O (1) espacio. Puede haber algunas optimizaciones a los factores constantes ocultos en la notación big-O, pero de lo contrario no podemos esperar encontrar opciones radicalmente mejores.
En general, esto significa que tenemos los siguientes algoritmos:
- Ingenuo: O (n 2 ) tiempo, O (1) espacio.
- Divide y vencerás: O (n lg n) tiempo, O (lg n) espacio.
- Divide y vencerás optimizado: O (n) tiempo, O (lg n) espacio.
- Programación dinámica: O (n) tiempo, O (1) espacio.
¡Espero que esto ayude!
EDITAR : Si está interesado, he codificado una versión de Python de estos cuatro algoritmos para que pueda jugar con ellos y juzgar sus rendimientos relativos. Aquí está el código:
# Four different algorithms for solving the maximum single-sell profit problem,
# each of which have different time and space complexity. This is one of my
# all-time favorite algorithms questions, since there are so many different
# answers that you can arrive at by thinking about the problem in slightly
# different ways.
#
# The maximum single-sell profit problem is defined as follows. You are given
# an array of stock prices representing the value of some stock over time.
# Assuming that you are allowed to buy the stock exactly once and sell the
# stock exactly once, what is the maximum profit you can make? For example,
# given the prices
#
# 2, 7, 1, 8, 2, 8, 4, 5, 9, 0, 4, 5
#
# The maximum profit you can make is 8, by buying when the stock price is 1 and
# selling when the stock price is 9. Note that while the greatest difference
# in the array is 9 (by subtracting 9 - 0), we cannot actually make a profit of
# 9 here because the stock price of 0 comes after the stock price of 9 (though
# if we wanted to lose a lot of money, buying high and selling low would be a
# great idea!)
#
# In the event that there's no profit to be made at all, we can always buy and
# sell on the same date. For example, given these prices (which might
# represent a buggy-whip manufacturer:)
#
# 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
#
# The best profit we can make is 0 by buying and selling on the same day.
#
# Let's begin by writing the simplest and easiest algorithm we know of that
# can solve this problem - brute force. We will just consider all O(n^2) pairs
# of values, and then pick the one with the highest net profit. There are
# exactly n + (n - 1) + (n - 2) + ... + 1 = n(n + 1)/2 different pairs to pick
# from, so this algorithm will grow quadratically in the worst-case. However,
# it uses only O(1) memory, which is a somewhat attractive feature. Plus, if
# our first intuition for the problem gives a quadratic solution, we can be
# satisfied that if we don't come up with anything else, we can always have a
# polynomial-time solution.
def BruteForceSingleSellProfit(arr):
# Store the best possible profit we can make; initially this is 0.
bestProfit = 0;
# Iterate across all pairs and find the best out of all of them. As a
# minor optimization, we don't consider any pair consisting of a single
# element twice, since we already know that we get profit 0 from this.
for i in range(0, len(arr)):
for j in range (i + 1, len(arr)):
bestProfit = max(bestProfit, arr[j] - arr[i])
return bestProfit
# This solution is extremely inelegant, and it seems like there just *has* to
# be a better solution. In fact, there are many better solutions, and we'll
# see three of them.
#
# The first insight comes if we try to solve this problem by using a divide-
# and-conquer strategy. Let's consider what happens if we split the array into
# two (roughly equal) halves. If we do so, then there are three possible
# options about where the best buy and sell times are:
#
# 1. We should buy and sell purely in the left half of the array.
# 2. We should buy and sell purely in the right half of the array.
# 3. We should buy in the left half of the array and sell in the right half of
# the array.
#
# (Note that we don't need to consider selling in the left half of the array
# and buying in the right half of the array, since the buy time must always
# come before the sell time)
#
# If we want to solve this problem recursively, then we can get values for (1)
# and (2) by recursively invoking the algorithm on the left and right
# subarrays. But what about (3)? Well, if we want to maximize our profit, we
# should be buying at the lowest possible cost in the left half of the array
# and selling at the highest possible cost in the right half of the array.
# This gives a very elegant algorithm for solving this problem:
#
# If the array has size 0 or size 1, the maximum profit is 0.
# Otherwise:
# Split the array in half.
# Compute the maximum single-sell profit in the left array, call it L.
# Compute the maximum single-sell profit in the right array, call it R.
# Find the minimum of the first half of the array, call it Min
# Find the maximum of the second half of the array, call it Max
# Return the maximum of L, R, and Max - Min.
#
# Let's consider the time and space complexity of this algorithm. Our base
# case takes O(1) time, and in our recursive step we make two recursive calls,
# one on each half of the array, and then does O(n) work to scan the array
# elements to find the minimum and maximum values. This gives the recurrence
#
# T(1) = O(1)
# T(n / 2) = 2T(n / 2) + O(n)
#
# Using the Master Theorem, this recurrence solves to O(n log n), which is
# asymptotically faster than our original approach! However, we do pay a
# (slight) cost in memory usage. Because we need to maintain space for all of
# the stack frames we use. Since on each recursive call we cut the array size
# in half, the maximum number of recursive calls we can make is O(log n), so
# this algorithm uses O(n log n) time and O(log n) memory.
def DivideAndConquerSingleSellProfit(arr):
# Base case: If the array has zero or one elements in it, the maximum
# profit is 0.
if len(arr) <= 1:
return 0;
# Cut the array into two roughly equal pieces.
left = arr[ : len(arr) / 2]
right = arr[len(arr) / 2 : ]
# Find the values for buying and selling purely in the left or purely in
# the right.
leftBest = DivideAndConquerSingleSellProfit(left)
rightBest = DivideAndConquerSingleSellProfit(right)
# Compute the best profit for buying in the left and selling in the right.
crossBest = max(right) - min(left)
# Return the best of the three
return max(leftBest, rightBest, crossBest)
# While the above algorithm for computing the maximum single-sell profit is
# better timewise than what we started with (O(n log n) versus O(n^2)), we can
# still improve the time performance. In particular, recall our recurrence
# relation:
#
# T(1) = O(1)
# T(n) = 2T(n / 2) + O(n)
#
# Here, the O(n) term in the T(n) case comes from the work being done to find
# the maximum and minimum values in the right and left halves of the array,
# respectively. If we could find these values faster than what we're doing
# right now, we could potentially decrease the function's runtime.
#
# The key observation here is that we can compute the minimum and maximum
# values of an array using a divide-and-conquer approach. Specifically:
#
# If the array has just one element, it is the minimum and maximum value.
# Otherwise:
# Split the array in half.
# Find the minimum and maximum values from the left and right halves.
# Return the minimum and maximum of these two values.
#
# Notice that our base case does only O(1) work, and our recursive case manages
# to do only O(1) work in addition to the recursive calls. This gives us the
# recurrence relation
#
# T(1) = O(1)
# T(n) = 2T(n / 2) + O(1)
#
# Using the Master Theorem, this solves to O(n).
#
# How can we make use of this result? Well, in our current divide-and-conquer
# solution, we split the array in half anyway to find the maximum profit we
# could make in the left and right subarrays. Could we have those recursive
# calls also hand back the maximum and minimum values of the respective arrays?
# If so, we could rewrite our solution as follows:
#
# If the array has size 1, the maximum profit is zero and the maximum and
# minimum values are the single array element.
# Otherwise:
# Split the array in half.
# Compute the maximum single-sell profit in the left array, call it L.
# Compute the maximum single-sell profit in the right array, call it R.
# Let Min be the minimum value in the left array, which we got from our
# first recursive call.
# Let Max be the maximum value in the right array, which we got from our
# second recursive call.
# Return the maximum of L, R, and Max - Min for the maximum single-sell
# profit, and the appropriate maximum and minimum values found from
# the recursive calls.
#
# The correctness proof for this algorithm works just as it did before, but now
# we never actually do a scan of the array at each step. In fact, we do only
# O(1) work at each level. This gives a new recurrence
#
# T(1) = O(1)
# T(n) = 2T(n / 2) + O(1)
#
# Which solves to O(n). We're now using O(n) time and O(log n) memory, which
# is asymptotically faster than before!
#
# The code for this is given below:
def OptimizedDivideAndConquerSingleSellProfit(arr):
# If the array is empty, the maximum profit is zero.
if len(arr) == 0:
return 0
# This recursive helper function implements the above recurrence. It
# returns a triple of (max profit, min array value, max array value). For
# efficiency reasons, we always reuse the array and specify the bounds as
# [lhs, rhs]
def Recursion(arr, lhs, rhs):
# If the array has just one element, we return that the profit is zero
# but the minimum and maximum values are just that array value.
if lhs == rhs:
return (0, arr[lhs], arr[rhs])
# Recursively compute the values for the first and latter half of the
# array. To do this, we need to split the array in half. The line
# below accomplishes this in a way that, if ported to other languages,
# cannot result in an integer overflow.
mid = lhs + (rhs - lhs) / 2
# Perform the recursion.
( leftProfit, leftMin, leftMax) = Recursion(arr, lhs, mid)
(rightProfit, rightMin, rightMax) = Recursion(arr, mid + 1, rhs)
# Our result is the maximum possible profit, the minimum of the two
# minima we've found (since the minimum of these two values gives the
# minimum of the overall array), and the maximum of the two maxima.
maxProfit = max(leftProfit, rightProfit, rightMax - leftMin)
return (maxProfit, min(leftMin, rightMin), max(leftMax, rightMax))
# Using our recursive helper function, compute the resulting value.
profit, _, _ = Recursion(arr, 0, len(arr) - 1)
return profit
# At this point we've traded our O(n^2)-time, O(1)-space solution for an O(n)-
# time, O(log n) space solution. But can we do better than this?
#
# To find a better algorithm, we'll need to switch our line of reasoning.
# Rather than using divide-and-conquer, let's see what happens if we use
# dynamic programming. In particular, let's think about the following problem.
# If we knew the maximum single-sell profit that we could get in just the first
# k array elements, could we use this information to determine what the
# maximum single-sell profit would be in the first k + 1 array elements? If we
# could do this, we could use the following algorithm:
#
# Find the maximum single-sell profit to be made in the first 1 elements.
# For i = 2 to n:
# Compute the maximum single-sell profit using the first i elements.
#
# How might we do this? One intuition is as follows. Suppose that we know the
# maximum single-sell profit of the first k elements. If we look at k + 1
# elements, then either the maximum profit we could make by buying and selling
# within the first k elements (in which case nothing changes), or we're
# supposed to sell at the (k + 1)st price. If we wanted to sell at this price
# for a maximum profit, then we would want to do so by buying at the lowest of
# the first k + 1 prices, then selling at the (k + 1)st price.
#
# To accomplish this, suppose that we keep track of the minimum value in the
# first k elements, along with the maximum profit we could make in the first
# k elements. Upon seeing the (k + 1)st element, we update what the current
# minimum value is, then update what the maximum profit we can make is by
# seeing whether the difference between the (k + 1)st element and the new
# minimum value is. Note that it doesn't matter what order we do this in; if
# the (k + 1)st element is the smallest element so far, there's no possible way
# that we could increase our profit by selling at that point.
#
# To finish up this algorithm, we should note that given just the first price,
# the maximum possible profit is 0.
#
# This gives the following simple and elegant algorithm for the maximum single-
# sell profit problem:
#
# Let profit = 0.
# Let min = arr[0]
# For k = 1 to length(arr):
# If arr[k] < min, set min = arr[k]
# If profit < arr[k] - min, set profit = arr[k] - min
#
# This is short, sweet, and uses only O(n) time and O(1) memory. The beauty of
# this solution is that we are quite naturally led there by thinking about how
# to update our answer to the problem in response to seeing some new element.
# In fact, we could consider implementing this algorithm as a streaming
# algorithm, where at each point in time we maintain the maximum possible
# profit and then update our answer every time new data becomes available.
#
# The final version of this algorithm is shown here:
def DynamicProgrammingSingleSellProfit(arr):
# If the array is empty, we cannot make a profit.
if len(arr) == 0:
return 0
# Otherwise, keep track of the best possible profit and the lowest value
# seen so far.
profit = 0
cheapest = arr[0]
# Iterate across the array, updating our answer as we go according to the
# above pseudocode.
for i in range(1, len(arr)):
# Update the minimum value to be the lower of the existing minimum and
# the new minimum.
cheapest = min(cheapest, arr[i])
# Update the maximum profit to be the larger of the old profit and the
# profit made by buying at the lowest value and selling at the current
# price.
profit = max(profit, arr[i] - cheapest)
return profit
# To summarize our algorithms, we have seen
#
# Naive: O(n ^ 2) time, O(1) space
# Divide-and-conquer: O(n log n) time, O(log n) space
# Optimized divide-and-conquer: O(n) time, O(log n) space
# Dynamic programming: O(n) time, O(1) space