Actualmente estoy desarrollando un clon de ruptura y me he topado con un obstáculo para que la detección de colisión entre una bola (círculo) y un ladrillo (polígono convexo) funcione correctamente. Estoy usando una prueba de detección de colisión Circle-Line donde cada línea representa y borde en el ladrillo de polígono convexo.
Para la mayoría de las veces, la prueba Circle-Line funciona correctamente y los puntos de colisión se resuelven correctamente.
Detección de colisión funcionando correctamente.
Sin embargo, de vez en cuando mi código de detección de colisión devuelve falso debido a un discriminante negativo cuando la bola realmente cruza el ladrillo.
Error de detección de colisión.
Soy consciente de la ineficiencia con este método y estoy usando cuadros delimitadores alineados con ejes para reducir la cantidad de ladrillos probados. Mi principal preocupación es si hay algún error matemático en mi código a continuación.
/*
* from and to are points at the start and end of the convex polygons edge.
* This function is called for every edge in the convex polygon until a
* collision is detected.
*/
bool circleLineCollision(Vec2f from, Vec2f to)
{
Vec2f lFrom, lTo, lLine;
Vec2f line, normal;
Vec2f intersectPt1, intersectPt2;
float a, b, c, disc, sqrt_disc, u, v, nn, vn;
bool one = false, two = false;
// set line vectors
lFrom = from - ball.circle.centre; // localised
lTo = to - ball.circle.centre; // localised
lLine = lFrom - lTo; // localised
line = from - to;
// calculate a, b & c values
a = lLine.dot(lLine);
b = 2 * (lLine.dot(lFrom));
c = (lFrom.dot(lFrom)) - (ball.circle.radius * ball.circle.radius);
// discriminant
disc = (b * b) - (4 * a * c);
if (disc < 0.0f)
{
// no intersections
return false;
}
else if (disc == 0.0f)
{
// one intersection
u = -b / (2 * a);
intersectPt1 = from + (lLine.scale(u));
one = pointOnLine(intersectPt1, from, to);
if (!one)
return false;
return true;
}
else
{
// two intersections
sqrt_disc = sqrt(disc);
u = (-b + sqrt_disc) / (2 * a);
v = (-b - sqrt_disc) / (2 * a);
intersectPt1 = from + (lLine.scale(u));
intersectPt2 = from + (lLine.scale(v));
one = pointOnLine(intersectPt1, from, to);
two = pointOnLine(intersectPt2, from, to);
if (!one && !two)
return false;
return true;
}
}
bool pointOnLine(Vec2f p, Vec2f from, Vec2f to)
{
if (p.x >= min(from.x, to.x) && p.x <= max(from.x, to.x) &&
p.y >= min(from.y, to.y) && p.y <= max(from.y, to.y))
return true;
return false;
}
sqrt_disc = sqrt(disc);
volver a colocarlo . Muchas gracias por su respuesta a continuación, me ayudó mucho.