En todos los ejemplos anteriores, el problema de decisión está en P y no se sabe que el problema de búsqueda esté en P, pero tampoco se sabe que es NP-hard. Quiero señalar que es posible tener un problema de búsqueda NP-hard cuya versión de decisión es fácil.
Considere el problema de satisfacción generalizado para determinadas relaciones R1, ... , Rk sobre dominio booleano { 0 , 1 }. Una instancia es una expresión de la forma
Ryo1( t11,…,t1r1)∧⋯∧Rim(tm1,…,tmrm)
where the
tij's are either variables or constants in
0,1, and
r1,…,rm are the arities of
R1,…,Rk (this is the same framework as in Schaeffer's dichotomy theorem with constants, in case you know what it is). The search problem is: given such an expression, find a lexicographically minimal solution, if there is one.
It was shown by Reith and Vollmer here that there exists a choice of relations R1,…,Rk that make this problem NP-hard (actually OptP-complete) but keep the satisfiability problem easy (quite trivial actually). An example given in the paper is R={(1,0,0),(0,1,0),(1,1,1)} (here k=1). Once the satisfiability problem is solvable in polynomial-time, the question whether there exists a lexicographically minimal satisfying assignment is trivial.
See Corollary 13 and the example following it in the paper above (at least in this on-line version).