Tengo una tarea en la que tengo que calcular y trazar algunos puntos usando una transformación pespectiva, pero no estoy seguro de que mis resultados sean correctos, ya que la trama 3D con coordenadas de cámara se ve muy diferente de la trama 2d con las coordenadas de la imagen . ¿Me pueden ayudar a entender qué pasa?
Esto es lo que se da: la cámara está en el punto W T C = [ - 1 , 1 , 5 ] T , especificada en coordenadas mundiales (en metros). El sistema de coordenadas de la cámara gira alrededor del eje Y de la referencia mundial en θ = 160 o , por lo que su matriz de rotación es w R c = [ c o s ( θ ) 0 s i n ( θ ) 0 1 0 - s i n (
Los parámetros de la cámara son: , s x = s y = 0.01 m m / p x , o x = 320 p x , o y = 240 p x
Puntos de muestra (en coordenadas mundiales):
Tengo que calcular y trazar los puntos en las coordenadas de la cámara y en las coordenadas de la imagen, así que escribí el siguiente código en Octave:
%camera intrinsic parameters
f = 16
Sx = 0.01
Sy = 0.01
Ox = 320
Oy = 240
%given points, in world coordinate
wP1 = transpose([1, 1, 0.5])
wP2 = transpose([1, 1.5, 0.5])
wP3 = transpose([1.5, 1.5, 0.5])
wP4 = transpose([1.5, 1, 0.5])
% camera translation matrix
wTc = transpose([-1, 1, 5])
% rotation angle converted to rad
theta = 160 / 180 * pi
%camera rotation matrix
wRc = transpose([cos(theta), 0, sin(theta); 0, 1, 0; -sin(theta), 0, cos(theta)])
%transform the points to homogeneous coordinates
wP1h = [wP1; 1]
wP2h = [wP2; 1]
wP3h = [wP3; 1]
wP4h = [wP4; 1]
%separate each line of the rotation matrix
R1 = transpose(wRc(1 , :))
R2 = transpose(wRc(2 , :))
R3 = transpose(wRc(3 , :))
%generate the extrinsic parameters matrix
Mext = [wRc, [-transpose(R1) * wTc; -transpose(R2) * wTc; -transpose(R3) * wTc]]
%intrinsic parameters matrix
Mint = [-f/Sx, 0, Ox; 0, -f/Sy, Oy; 0, 0, 1]
% calculate coordinates in camera coordinates
cP1 = wRc * (wP1 - wTc)
cP2 = wRc * (wP2 - wTc)
cP3 = wRc * (wP3 - wTc)
cP4 = wRc * (wP4 - wTc)
% put coordinates in a list for plotting
x = [cP1(1), cP2(1), cP3(1), cP4(1), cP1(1)]
y = [cP1(2), cP2(2), cP3(2), cP4(2), cP1(2)]
z = [cP1(3), cP2(3), cP3(3), cP4(3), cP1(3)]
%plot the points in 3D using camera coordinates
plot3(x, y, z, "o-r")
pause()
% calculate the points in image coordinates
iP1 = Mint * (Mext * wP1h)
iP2 = Mint * (Mext * wP2h)
iP3 = Mint * (Mext * wP3h)
iP4 = Mint * (Mext * wP4h)
%generate a list of points for plotting
x = [iP1(1) / iP1(3), iP2(1) / iP2(3), iP3(1) / iP3(3), iP4(1) / iP4(3), iP1(1) / iP1(3)]
y = [iP1(2) / iP1(3), iP2(2) / iP2(3), iP3(2) / iP3(3), iP4(2) / iP4(3), iP1(2) / iP1(3)]
plot(x, y, "o-r")
pause()
Y estas son las tramas que obtuve del guión: esperaba que fueran algo similares, pero no lo parecen.
Trazar en coordenadas de cámara
Trazar en coordenadas de imagen