Python 3, puntaje = 4/3 = 1.33… (N = 4) puntaje = 1.4 (N = 7)
Actualización: implementado la búsqueda de fuerza bruta en el conjunto de solucionadores "estáticos", y obtuve un nuevo resultado
Creo que se puede mejorar aún más mediante la búsqueda de solucionadores dinámicos, que pueden utilizar los resultados de ponderación para futuras decisiones.
Aquí hay un código de Python que busca valores pequeños en todos los solucionadores estáticos n
(estos solucionadores siempre pesan los mismos conjuntos de monedas, de ahí el nombre "estático") y determina el número de pasos en el peor de los casos simplemente comprobando que sus resultados de medición permiten solo una moneda coincidente establecido en todos los casos. Además, realiza un seguimiento del mejor puntaje encontrado hasta ahora y de los primeros solucionadores de ciruelas pasas que habían demostrado que definitivamente son peores que los que se encontraron antes. Esta fue una optimización importante, de lo contrario no podría esperar este resultado con n
= 7. (Pero claramente todavía no está muy bien optimizado)
No dude en hacer preguntas si no está claro cómo funciona ...
#!/usr/bin/env python3
import itertools
from functools import partial
def get_all_possible_coinsets(n):
return tuple(itertools.product(*itertools.repeat((-1, 1), n)))
def weigh(coinset, indexes_to_weigh):
return sum(coinset[x] for x in indexes_to_weigh)
# made_measurements: [(indexes, weight)]
def filter_by_measurements(coinsets, made_measurements):
return filter(lambda cs: all(w == weigh(cs, indexes) for indexes, w in made_measurements), coinsets)
class Position(object):
def __init__(self, all_coinsets, coinset, made_measurements=()):
self.all_coinsets = all_coinsets
self.made_measurements = made_measurements
self.coins = coinset
def possible_coinsets(self):
return tuple(filter_by_measurements(self.all_coinsets, self.made_measurements))
def is_final(self):
possible_coinsets = self.possible_coinsets()
return (len(possible_coinsets) == 1) and possible_coinsets[0] == self.coins
def move(self, measurement_indexes):
measure_result = (measurement_indexes, weigh(self.coins, measurement_indexes))
return Position(self.all_coinsets, self.coins, self.made_measurements + (measure_result,))
def get_all_start_positions(coinsets):
for cs in coinsets:
yield Position(coinsets, cs)
def average(xs):
return sum(xs) / len(xs)
class StaticSolver(object):
def __init__(self, measurements):
self.measurements = measurements
def choose_move(self, position: Position):
index = len(position.made_measurements)
return self.measurements[index]
def __str__(self, *args, **kwargs):
return 'StaticSolver({})'.format(', '.join(map(lambda x: '{' + ','.join(map(str, x)) + '}', self.measurements)))
def __repr__(self):
return str(self)
class FailedSolver(Exception):
pass
def test_solvers(solvers, start_positions, max_steps):
for solver in solvers:
try:
test_results = tuple(map(partial(test_solver, solver=solver, max_steps=max_steps), start_positions))
yield (solver, max(test_results))
except FailedSolver:
continue
def all_measurement_starts(n):
for i in range(1, n + 1):
yield from itertools.combinations(range(n), i)
def next_measurement(n, measurement, include_zero):
shifted = filter(lambda x: x < n, map(lambda x: x + 1, measurement))
if include_zero:
return tuple(itertools.chain((0,), shifted))
else:
return tuple(shifted)
def make_measurement_sequence(n, start, zero_decisions):
yield start
m = start
for zero_decision in zero_decisions:
m = next_measurement(n, m, zero_decision)
yield m
def measurement_sequences_from_start(n, start, max_steps):
continuations = itertools.product(*itertools.repeat((True, False), max_steps - 1))
for c in continuations:
yield tuple(make_measurement_sequence(n, start, c))
def all_measurement_sequences(n, max_steps):
starts = all_measurement_starts(n)
for start in starts:
yield from measurement_sequences_from_start(n, start, max_steps)
def all_static_solvers(n, max_steps):
return map(StaticSolver, all_measurement_sequences(n, max_steps))
def main():
best_score = 1.0
for n in range(1, 11):
print('Searching with N = {}:'.format(n))
coinsets = get_all_possible_coinsets(n)
start_positions = tuple(get_all_start_positions(coinsets))
# we are not interested in solvers with worst case number of steps bigger than this
max_steps = int(n / best_score)
solvers = all_static_solvers(n, max_steps)
succeeded_solvers = test_solvers(solvers, start_positions, max_steps)
try:
best = min(succeeded_solvers, key=lambda x: x[1])
except ValueError: # no successful solvers
continue
score = n / best[1]
best_score = max(score, best_score)
print('{}, score = {}/{} = {}'.format(best, n, best[1], score))
print('That\'s all!')
def test_solver(start_position: Position, solver, max_steps):
p = start_position
steps = 0
try:
while not p.is_final():
steps += 1
if steps > max_steps:
raise FailedSolver
p = p.move(solver.choose_move(p))
return steps
except IndexError: # solution was not found after given steps — this solver failed to beat score 1
raise FailedSolver
if __name__ == '__main__':
main()
La salida:
Searching with N = 1:
(StaticSolver({0}), 1), score = 1/1 = 1.0
Searching with N = 2:
(StaticSolver({0}, {0,1}), 2), score = 2/2 = 1.0
Searching with N = 3:
(StaticSolver({0}, {0,1}, {0,1,2}), 3), score = 3/3 = 1.0
Searching with N = 4:
(StaticSolver({0,1}, {1,2}, {0,2,3}, {0,1,3}), 3), score = 4/3 = 1.3333333333333333
Searching with N = 5:
Searching with N = 6:
Searching with N = 7:
(StaticSolver({0,2}, {0,1,3}, {0,1,2,4}, {1,2,3,5}, {0,2,3,4,6}), 5), score = 7/5 = 1.4
Searching with N = 8:
Searching with N = 9:
(I gave up waiting at this moment)
Esta línea
(StaticSolver({0,2}, {0,1,3}, {0,1,2,4}, {1,2,3,5}, {0,2,3,4,6}), 5), score = 7/5 = 1.4
descubre el mejor solucionador encontrado. Los números entre {}
llaves son los índices de monedas para colocar en el dispositivo de ponderación en cada paso.