Antigua pregunta, pero pensé que valía una respuesta práctica. Me topé con él justo después de mirar una guía de cómo construir dicha red neuronal, demostrando el eco de la randint de Python como ejemplo . Aquí está el código final sin una explicación detallada, aún bastante simple y útil en caso de que el enlace se desconecte:
from random import randint
from numpy import array
from numpy import argmax
from pandas import concat
from pandas import DataFrame
from keras.models import Sequential
from keras.layers import LSTM
from keras.layers import Dense
# generate a sequence of random numbers in [0, 99]
def generate_sequence(length=25):
return [randint(0, 99) for _ in range(length)]
# one hot encode sequence
def one_hot_encode(sequence, n_unique=100):
encoding = list()
for value in sequence:
vector = [0 for _ in range(n_unique)]
vector[value] = 1
encoding.append(vector)
return array(encoding)
# decode a one hot encoded string
def one_hot_decode(encoded_seq):
return [argmax(vector) for vector in encoded_seq]
# generate data for the lstm
def generate_data():
# generate sequence
sequence = generate_sequence()
# one hot encode
encoded = one_hot_encode(sequence)
# create lag inputs
df = DataFrame(encoded)
df = concat([df.shift(4), df.shift(3), df.shift(2), df.shift(1), df], axis=1)
# remove non-viable rows
values = df.values
values = values[5:,:]
# convert to 3d for input
X = values.reshape(len(values), 5, 100)
# drop last value from y
y = encoded[4:-1,:]
return X, y
# define model
model = Sequential()
model.add(LSTM(50, batch_input_shape=(5, 5, 100), stateful=True))
model.add(Dense(100, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])
# fit model
for i in range(2000):
X, y = generate_data()
model.fit(X, y, epochs=1, batch_size=5, verbose=2, shuffle=False)
model.reset_states()
# evaluate model on new data
X, y = generate_data()
yhat = model.predict(X, batch_size=5)
print('Expected: %s' % one_hot_decode(y))
print('Predicted: %s' % one_hot_decode(yhat))
¡Acabo de intentarlo y de hecho funciona bastante bien! Tomó solo un par de minutos en mi viejo netbook lento. Aquí está mi propia salida, diferente del enlace anterior y puede ver que la coincidencia no es perfecta, por lo que supongo que los criterios de salida son demasiado permisivos:
...
- 0s - loss: 0.2545 - acc: 1.0000
Epoch 1/1
- 0s - loss: 0.1845 - acc: 1.0000
Epoch 1/1
- 0s - loss: 0.3113 - acc: 0.9500
Expected: [14, 37, 0, 65, 30, 7, 11, 6, 16, 19, 68, 4, 25, 2, 79, 45, 95, 92, 32, 33]
Predicted: [14, 37, 0, 65, 30, 7, 11, 6, 16, 19, 68, 4, 25, 2, 95, 45, 95, 92, 32, 33]