Cómo verificar si un binario requiere SSE4 o AVX en Linux


20

En Linux, /proc/cpuinfopermite verificar todos los indicadores de CPU que tiene la máquina de una manera simple.
Por lo general, si un programa requiere un superconjunto del conjunto de instrucciones de una máquina, la forma más fácil de determinarlo es ejecutarlo y ver si genera una SIGILLseñal.

Pero en mi caso, todos mis procesadores admiten al menos SSE4.1 y AVX.
Entonces, ¿hay una manera simple de verificar si un binario tiene instrucciones especiales dentro?


Tal vez hay emuladores que le permiten seleccionar qué conjuntos de instrucciones están habilitados. QEMU actualmente no es compatible con AVX, por lo que podría "no funcionar" como se esperaba allí: superuser.com/questions/453786/how-do-i-get-avx-support-in-qemu || superuser.com/questions/548740/…
Ciro Santilli 新疆 改造 中心 法轮功 六四 事件

2
objdump --disassemblerealiza un desmontaje Puede usar objdumppara generar una lista de mnemotécnicos. Es parte de Binutils, por lo que está disponible en sistemas GNU Linux. Además, las instrucciones adicionales pueden estar presentes pero no pueden ejecutarse. El programa podría tener guardias de tiempo de ejecución.
jww

@jww: heemm, sí, pero me molesto en tener un ejecutable ejecutándose en todas partes, no en aprender más de 600 códigos de operación para programar en ensamblador.
user2284570

Bueno, tienes que aprender lo que puedes (y no puedes) usar. Esa es tu responsabilidad. Supongo que podría compilar -mavxpara asegurarse de que el compilador solo seleccione desde AVX ISA, pero hay formas de evitarlo. Por ejemplo, el ensamblador en línea generalmente puede eludir las verificaciones ISA del compilador.
jww

@jww: y si el binario es una fuente cerrada (en el sentido de que el código fuente se elimina después de la construcción), ¿se compila un objeto compartido por un script / compilador propietario?
user2284570

Respuestas:


11

Expulsé un programa en Rust que intenta hacer esto. Creo que funciona, aunque es indocumentado y terriblemente frágil:

https://github.com/pkgw/elfx86exts

Ejemplo de uso:

$ cd elfx86exts
$ cargo build
[things happen]
$ cargo run -- /bin/ls
   Compiling elfx86exts v0.1.0 (file:///home/peter/sw/elfx86exts)
    Finished dev [unoptimized + debuginfo] target(s) in 1.9 secs
     Running `target/debug/elfx86exts /bin/ls`
MODE64
CMOV
SSE2
SSE1

Intenté ejecutarlo en libtensorflow.so (sha224: 8f665acf0f455d5056014dfa2d48c22ab6cf83eb073842e8304878d0) desde este paquete (versión: 1.8.0-5) y congeló toda mi computadora.
Philippe

@Philippe ¡Presente un problema en GitHub! Ese es el mejor lugar para discutir tales temas, creo.
Peter

Ok, creé un problema en tu github.
Philippe

18

Me encontré con el mismo problema cuando intentaba comprender los procesos de optimización de GCC y averiguar qué instrucciones se usaron o no durante este proceso. Como no soy amigable con la enorme cantidad de códigos de operación, estaba buscando una manera de visualizar instrucciones específicas (digamos SSE3) dentro del código desensamblado, o al menos imprimir algunas estadísticas mínimas como si y cuántas instrucciones hay allí en el binario

No he encontrado ninguna solución existente, pero la respuesta de Jonathan Ben-Avraham resultó muy útil, ya que señala una gran fuente (e incluso parcialmente estructurada) de códigos de operación. En base a estos datos, he escrito un script Bash que puede visualizar conjuntos de instrucciones específicos o imprimir estadísticas sobre ellos utilizando grepcuando se alimenta con salida de objdump.

La lista de códigos de operación se ha convertido en una secuencia de comandos Bash independiente que luego se incluye (con el fin de una mejor legibilidad) en el archivo principal que he nombrado simplemente opcode. Dado que los códigos de operación en gas.vim( definiciones de sintaxis de Shirkvim , de la respuesta de Jonathan) se agruparon sistemáticamente (aparentemente) de acuerdo con diferentes arquitecturas de CPU, traté de preservar esta división y hacer una asignación de arquitectura-> conjunto de instrucciones ; Ahora no estoy seguro de si fue una buena idea. El mapeo no es exacto e incluso tuve que hacer algunos cambios en el originalgas.vimagrupamiento. Dado que los conjuntos de instrucciones relacionados con la arquitectura no eran mi intención original, traté de construir solo conjuntos de instrucciones de las principales arquitecturas descritas en Internet, pero sin consultar las documentaciones de los fabricantes. Las arquitecturas de AMD no me parecen confiables (excepto conjuntos de instrucciones como 3DNow! Y SSE5). Sin embargo, decidí dejar el código para los conjuntos de instrucciones de varias arquitecturas aquí para que otra persona lo examine y corrija / mejore y para dar a otros algunos resultados tentativos.

Comienzo del archivo principal llamado opcode:

#!/bin/bash
#
# Searches disassembled code for specific instructions.
#
# Opcodes obtained from: https://github.com/Shirk/vim-gas/blob/master/syntax/gas.vim
#
# List of opcodes has been obtained using the following commands and making a few modifications:
#   echo '#!/bin/bash' > Opcode_list
#   wget -q -O- https://raw.githubusercontent.com/Shirk/vim-gas/master/syntax/gas.vim \
#    | grep -B1 -E 'syn keyword gasOpcode_|syn match   gasOpcode' | \
#    sed -e '/^--$/d' -e 's/"-- Section:/\n#/g' \
#    -e 's/syn keyword gasOpcode_\([^\t]*\)*\(\t\)*\(.*\)/Opcode_\1="\${Opcode_\1} \3"/g' \
#    -e 's/Opcode_PENT_3DNOW/Opcode_ATHLON_3DNOW/g' -e 's/\\//g' \
#    -e 's/syn match   gasOpcode_\([^\t]*\)*.*\/<\(.*\)>\//Opcode_\1="\${Opcode_\1} \2"/g' \
#    >> Opcode_list
#
# Modify file Opcode_list replacing all occurrences of:
#   * Opcode_Base within the section "Tejas New Instructions (SSSE3)" with Opcode_SSSE3
#   * Opcode_Base within the section "Willamette MMX instructions (SSE2 SIMD Integer Instructions)"
#                                        with Opcode_WILLAMETTE_Base

# return values
EXIT_FOUND=0
EXIT_NOT_FOUND=1
EXIT_USAGE=2

# settings
InstSet_Base=""
Recursive=false
Count_Matching=false
Leading_Separator='\s'
Trailing_Separator='(\s|$)' # $ matches end of line for non-parametric instructions like nop
Case_Insensitive=false
Invert=false
Verbose=false
Stop_After=0
Line_Numbers=false
Leading_Context=0
Trailing_Context=0

source Opcode_list   # include opcodes from a separate file

# GAS-specific opcodes (unofficial names) belonging to the x64 instruction set.
# They are generated by GNU tools (e.g. GDB, objdump) and specify a variant of ordinal opcodes like NOP and MOV.
# If you do not want these opcodes to be recognized by this script, comment out the following line.
Opcode_X64_GAS="nopw nopl movabs"


# instruction sets
InstSet_X86="8086_Base 186_Base 286_Base 386_Base 486_Base PENT_Base P6_Base KATMAI_Base WILLAMETTE_Base PENTM_Base"
InstSet_IA64="IA64_Base"
InstSet_X64="PRESCOTT_Base X64_Base X86_64_Base NEHALEM_Base X64_GAS"
InstSet_MMX="PENT_MMX KATMAI_MMX X64_MMX"
InstSet_MMX2="KATMAI_MMX2"
InstSet_3DNOW="ATHLON_3DNOW"
InstSet_SSE="KATMAI_SSE P6_SSE X64_SSE"
InstSet_SSE2="SSE2 X64_SSE2"
InstSet_SSE3="PRESCOTT_SSE3"
InstSet_SSSE3="SSSE3"
InstSet_VMX="VMX X64_VMX"
InstSet_SSE4_1="SSE41 X64_SSE41"
InstSet_SSE4_2="SSE42 X64_SSE42"
InstSet_SSE4A="AMD_SSE4A"
InstSet_SSE5="AMD_SSE5"
InstSet_FMA="FUTURE_FMA"
InstSet_AVX="SANDYBRIDGE_AVX"

InstSetDep_X64="X86"
InstSetDep_MMX2="MMX"
InstSetDep_SSE2="SSE"
InstSetDep_SSE3="SSE2"
InstSetDep_SSSE3="SSE3"
InstSetDep_SSE4_1="SSSE3"
InstSetDep_SSE4_2="SSE4_1"
InstSetDep_SSE4A="SSE3"
InstSetDep_SSE5="FMA AVX" # FIXME not reliable

InstSetList="X86 IA64 X64 MMX MMX2 3DNOW SSE SSE2 SSE3 SSSE3 VMX SSE4_1 SSE4_2 SSE4A SSE5 FMA AVX"


# architectures
Arch_8086="8086_Base"
Arch_186="186_Base"
Arch_286="286_Base"
Arch_386="386_Base"
Arch_486="486_Base"
Arch_Pentium="PENT_Base PENT_MMX" # Pentium = P5 architecture
Arch_Athlon="ATHLON_3DNOW"
Arch_Deschutes="P6_Base P6_SSE" # Pentium II
Arch_Katmai="KATMAI_Base KATMAI_MMX KATMAI_MMX2 KATMAI_SSE" # Pentium III
Arch_Willamette="WILLAMETTE_Base SSE2" # original Pentium IV (x86)
Arch_PentiumM="PENTM_Base"
Arch_Prescott="PRESCOTT_Base X64_Base X86_64_Base X64_SSE2 PRESCOTT_SSE3 VMX X64_VMX X64_GAS" # later Pentium IV (x64) with SSE3 (Willamette only implemented SSE2 instructions) and VT (VT-x, aka VMX)
Arch_P6=""
Arch_Barcelona="ATHLON_3DNOW AMD_SSE4A"
Arch_IA64="IA64_Base" # 64-bit Itanium RISC processor; incompatible with x64 architecture
Arch_Penryn="SSSE3 SSE41 X64_SSE41" # later (45nm) Core 2 with SSE4.1
Arch_Nehalem="NEHALEM_Base SSE42 X64_SSE42" # Core i#
Arch_SandyBridge="SANDYBRIDGE_AVX"
Arch_Haswell="FUTURE_FMA"
Arch_Bulldozer="AMD_SSE5"

ArchDep_8086=""
ArchDep_186="8086"
ArchDep_286="186"
ArchDep_386="286"
ArchDep_486="386"
ArchDep_Pentium="486"
ArchDep_Athlon="Pentium" # FIXME not reliable
ArchDep_Deschutes="Pentium"
ArchDep_Katmai="Deschutes"
ArchDep_Willamette="Katmai"
ArchDep_PentiumM="Willamette" # FIXME Pentium M is a Pentium III modification (with SSE2). Does it support also WILLAMETTE_Base instructions?
ArchDep_Prescott="Willamette"
ArchDep_P6="Prescott" # P6 started with Pentium Pro; FIXME Pentium Pro did not support MMX instructions (introduced again in Pentium II aka Deschutes)
ArchDep_Barcelona="Prescott" # FIXME not reliable
ArchDep_IA64=""
ArchDep_Penryn="P6"
ArchDep_Nehalem="Penryn"
ArchDep_SandyBridge="Nehalem"
ArchDep_Haswell="SandyBridge"
ArchDep_Bulldozer="Haswell" # FIXME not reliable

ArchList="8086 186 286 386 486 Pentium Athlon Deschutes Katmai Willamette PentiumM Prescott P6 Barcelona IA64 Penryn Nehalem SandyBridge Haswell Bulldozer"

Puede encontrar un ejemplo de un Opcode_listarchivo generado y modificado utilizando las instrucciones opcodedel 27 de octubre de 2014 en http://pastebin.com/yx4rCxqs . Puede insertar este archivo directamente opcodeen lugar de la source Opcode_listlínea. He publicado este código porque Stack Exchange no me permitió enviar una respuesta tan grande.

Finalmente, el resto del opcodearchivo con la lógica real:

usage() {
    echo "Usage: $0 OPTIONS"
    echo ""
    echo "  -r      set instruction sets recursively according to dependency tree (must precede -a or -s)"
    echo "  -a      set architecture"
    echo "  -s      set instruction set"
    echo "  -L      show list of available architectures"
    echo "  -l      show list of available instruction sets"
    echo "  -i      show base instruction sets of current instruction set (requires -a and/or -s)"
    echo "  -I      show instructions in current instruction set (requires -a and/or -s)"
    echo "  -c      print number of matching instructions instead of normal output"
    echo "  -f      find instruction set of the following instruction (regex allowed)"
    echo "  -d      set leading opcode separator (default '$Leading_Separator')"
    echo "  -D      set trailing opcode separator (default '$Trailing_Separator')"
    echo "  -C      case-insensitive"
    echo "  -v      invert the sense of matching"
    echo "  -V      print all lines, not just the highlighted"
    echo "  -m      stop searching after n matched instructions"
    echo "  -n      print line numbers within the original input"
    echo "  -B      print n instructions of leading context"
    echo "  -A      print n instructions of trailing context"
    echo "  -h      print this help"
    echo
    echo "Multiple architectures and instruction sets can be used."
    echo
    echo "Typical usage is:"
    echo "  objdump -M intel -d FILE | $0 OPTIONS"
    echo "  objdump -M intel -d FILE | $0 -s SSE2 -s SSE3 -V                    Highlight SSE2 and SSE3 within FILE."
    echo "  objdump -M intel -d FILE | tail -n +8 | $0 -r -a Haswell -v -m 1    Find first unknown instruction."
    echo "  $0 -C -f ADDSD                                                      Find which instruction set an opcode belongs to."
    echo "  $0 -f .*fma.*                                                       Find all matching instructions and their instruction sets."
    echo
    echo "The script uses Intel opcode syntax. When used in conjunction with objdump, \`-M intel' must be set in order to prevent opcode translation using AT&T syntax."
    echo
    echo "BE AWARE THAT THE LIST OF KNOWN INSTRUCTIONS OR INSTRUCTIONS SUPPORTED BY PARTICULAR ARCHITECTURES (ESPECIALLY AMD'S) IS ONLY TENTATIVE AND MAY CONTAIN MISTAKES!"
    kill -TRAP $TOP_PID
}

list_contains() {   # Returns 0 if $2 is in array $1, 1 otherwise.
    local e
    for e in $1; do
        [ "$e" = "$2" ] && return 0
    done
    return 1
}

build_instruction_set() {   # $1 = enum { Arch, InstSet }, $2 = architecture or instruction set as obtained using -L or -l, $3 = "architecture"/"instruction set" to be used in error message
    local e
    list_contains "`eval echo \\\$${1}List`" "$2" || (echo "$2 is not a valid $3."; usage)      # Test if the architecture/instruction set is valid.
    if [ -n "`eval echo \\\$${1}_${2}`" ]; then                                                 # Add the instruction set(s) if any.
        for e in `eval echo \\\$${1}_${2}`; do                                                  # Skip duplicates.
            list_contains "$InstSet_Base" $e || InstSet_Base="$e $InstSet_Base"
        done
    fi
    if [ $Recursive = true ]; then
        for a in `eval echo \\\$${1}Dep_$2`; do
            build_instruction_set $1 $a "$3"
        done
    fi
    InstSet_Base="`echo $InstSet_Base | sed 's/$ *//'`"                                         # Remove trailing space.
}

trap "exit $EXIT_USAGE" TRAP    # Allow usage() function to abort script execution.
export TOP_PID=$$               # PID of executing process.

# Parse command line arguments.
while getopts ":ra:s:LliIcf:Fd:D:CvVm:nB:A:h" o; do
    case $o in
        r) Recursive=true ;;
        a) build_instruction_set Arch "$OPTARG" "architecture" ;;
        s) build_instruction_set InstSet "$OPTARG" "instruction set" ;;
        L) echo $ArchList; exit $EXIT_USAGE ;;
        l) echo $InstSetList; exit $EXIT_USAGE ;;
        i)
            if [ -n "$InstSet_Base" ]; then
                echo $InstSet_Base
                exit $EXIT_USAGE
            else
                echo -e "No instruction set or architecture set.\n"
                usage
            fi
            ;;
        I)
            if [ -n "$InstSet_Base" ]; then
                for s in $InstSet_Base; do
                    echo -ne "\e[31;1m$s:\e[0m "
                    eval echo "\$Opcode_$s"
                done
                exit $EXIT_USAGE
            else
                echo -e "No instruction set or architecture set.\n"
                usage
            fi
            ;;
        c) Count_Matching=true ;;
        f)
            # Unlike architectures, instruction sets are disjoint.
            Found=false
            for s in $InstSetList; do
                for b in `eval echo \\\$InstSet_$s`; do
                    Found_In_Base=false
                    for i in `eval echo \\\$Opcode_$b`; do
                        if [[ "$i" =~ ^$OPTARG$ ]]; then
                            $Found_In_Base || echo -ne "Instruction set \e[33;1m$s\e[0m (base instruction set \e[32;1m$b\e[0m):"
                            echo -ne " \e[31;1m$i\e[0m"
                            Found_In_Base=true
                            Found=true
                        fi
                    done
                    $Found_In_Base && echo ""
                done
            done
            if [ $Found = false ]; then
                echo -e "Operation code \e[31;1m$OPTARG\e[0m has not been found in the database of known instructions." \
                "Perhaps it is translated using other than Intel syntax. If obtained from objdump, check if the \`-M intel' flag is set." \
                "Be aware that the search is case sensitive by default (you may use the -C flag, otherwise only lower case opcodes are accepted)."
                exit $EXIT_NOT_FOUND
            else
                exit $EXIT_FOUND
            fi
            ;;
        d) Leading_Separator="$OPTARG" ;;
        D) Trailing_Separator="$OPTARG" ;;
        C) Case_Insensitive=true ;;
        v) Invert=true ;;
        V) Verbose=true ;;
        m) Stop_After=$OPTARG ;;
        n) Line_Numbers=true ;;
        B) Leading_Context=$OPTARG ;;
        A) Trailing_Context=$OPTARG ;;
        h) usage ;;
        \?)
            echo -e "Unknown option: -$OPTARG\n"
            usage
            ;;
    esac
done
shift $((OPTIND-1))
[ -n "$1" ] && echo -e "Unknown command line parameter: $1\n" && usage
[ -z "$InstSet_Base" ] && usage

# Create list of grep parameters.
Grep_Params="--color=auto -B $Leading_Context -A $Trailing_Context"
[ $Count_Matching = true ] && Grep_Params="$Grep_Params -c"
[ $Case_Insensitive = true ] && Grep_Params="$Grep_Params -i"
[ $Invert = true ] && Grep_Params="$Grep_Params -v"
[ $Stop_After -gt 0 ] && Grep_Params="$Grep_Params -m $Stop_After"
[ $Line_Numbers = true ] && Grep_Params="$Grep_Params -n"

# Build regular expression for use in grep.
RegEx=""
for s in $InstSet_Base; do
    eval RegEx=\"$RegEx \$Opcode_$s\"
done
# Add leading and trailing opcode separators to prevent false positives.
RegEx="$Leading_Separator`echo $RegEx | sed "s/ /$(echo "$Trailing_Separator"|sed 's/[\/&]/\\\&/g')|$(echo "$Leading_Separator"|sed 's/[\/&]/\\\&/g')/g"`$Trailing_Separator"

[ $Verbose = true -a $Count_Matching = false ] && RegEx="$RegEx|\$"

# The actual search.
grep $Grep_Params -E "$RegEx" && exit $EXIT_FOUND || exit $EXIT_NOT_FOUND

Tenga en cuenta que si su consulta de búsqueda es demasiado grande (p. Ej., Con el conjunto de instrucciones de Haswell y el -rinterruptor, esto incluye cientos de instrucciones), el cálculo puede continuar lentamente y tomar mucho tiempo en entradas grandes para las que este simple script no estaba destinado .

Para obtener información detallada sobre el uso, consulte

./opcode -h

El opcodescript completo (con Opcode_list incluido) se puede encontrar en http://pastebin.com/A8bAuHAP .

Siéntase libre de mejorar la herramienta y corregir cualquier error que pueda haber cometido. Por último, me gustaría agradecer a Jonathan Ben-Avraham por su gran idea de usar el gas.vimarchivo de Shirk .

EDITAR: El script ahora puede encontrar a qué conjunto de instrucciones pertenece un código de operación (se puede usar la expresión regular).


9

Primero, descompila tu binario:

objdump -d binary > binary.asm

Luego encuentre todas las instrucciones SSE4 en el archivo de ensamblaje:

awk '/[ \t](mpsadbw|phminposuw|pmulld|pmuldq|dpps|dppd|blendps|blendpd|blendvps|blendvpd|pblendvb|pblenddw|pminsb|pmaxsb|pminuw|pmaxuw|pminud|pmaxud|pminsd|pmaxsd|roundps|roundss|roundpd|roundsd|insertps|pinsrb|pinsrd|pinsrq|extractps|pextrb|pextrd|pextrw|pextrq|pmovsxbw|pmovzxbw|pmovsxbd|pmovzxbd|pmovsxbq|pmovzxbq|pmovsxwd|pmovzxwd|pmovsxwq|pmovzxwq|pmovsxdq|pmovzxdq|ptest|pcmpeqq|pcmpgtq|packusdw|pcmpestri|pcmpestrm|pcmpistri|pcmpistrm|crc32|popcnt|movntdqa|extrq|insertq|movntsd|movntss|lzcnt)[ \t]/' binary.asm

(Nota: CRC32 podría coincidir con los comentarios).

Encuentre las instrucciones AVX más comunes (incluyendo escalar, incluyendo AVX2, familia AVX-512 y algunos como FMA vfmadd132pd):

awk '/[ \t](vmovapd|vmulpd|vaddpd|vsubpd|vfmadd213pd|vfmadd231pd|vfmadd132pd|vmulsd|vaddsd|vmosd|vsubsd|vbroadcastss|vbroadcastsd|vblendpd|vshufpd|vroundpd|vroundsd|vxorpd|vfnmadd231pd|vfnmadd213pd|vfnmadd132pd|vandpd|vmaxpd|vmovmskpd|vcmppd|vpaddd|vbroadcastf128|vinsertf128|vextractf128|vfmsub231pd|vfmsub132pd|vfmsub213pd|vmaskmovps|vmaskmovpd|vpermilps|vpermilpd|vperm2f128|vzeroall|vzeroupper|vpbroadcastb|vpbroadcastw|vpbroadcastd|vpbroadcastq|vbroadcasti128|vinserti128|vextracti128|vpminud|vpmuludq|vgatherdpd|vgatherqpd|vgatherdps|vgatherqps|vpgatherdd|vpgatherdq|vpgatherqd|vpgatherqq|vpmaskmovd|vpmaskmovq|vpermps|vpermd|vpermpd|vpermq|vperm2i128|vpblendd|vpsllvd|vpsllvq|vpsrlvd|vpsrlvq|vpsravd|vblendmpd|vblendmps|vpblendmd|vpblendmq|vpblendmb|vpblendmw|vpcmpd|vpcmpud|vpcmpq|vpcmpuq|vpcmpb|vpcmpub|vpcmpw|vpcmpuw|vptestmd|vptestmq|vptestnmd|vptestnmq|vptestmb|vptestmw|vptestnmb|vptestnmw|vcompresspd|vcompressps|vpcompressd|vpcompressq|vexpandpd|vexpandps|vpexpandd|vpexpandq|vpermb|vpermw|vpermt2b|vpermt2w|vpermi2pd|vpermi2ps|vpermi2d|vpermi2q|vpermi2b|vpermi2w|vpermt2ps|vpermt2pd|vpermt2d|vpermt2q|vshuff32x4|vshuff64x2|vshuffi32x4|vshuffi64x2|vpmultishiftqb|vpternlogd|vpternlogq|vpmovqd|vpmovsqd|vpmovusqd|vpmovqw|vpmovsqw|vpmovusqw|vpmovqb|vpmovsqb|vpmovusqb|vpmovdw|vpmovsdw|vpmovusdw|vpmovdb|vpmovsdb|vpmovusdb|vpmovwb|vpmovswb|vpmovuswb|vcvtps2udq|vcvtpd2udq|vcvttps2udq|vcvttpd2udq|vcvtss2usi|vcvtsd2usi|vcvttss2usi|vcvttsd2usi|vcvtps2qq|vcvtpd2qq|vcvtps2uqq|vcvtpd2uqq|vcvttps2qq|vcvttpd2qq|vcvttps2uqq|vcvttpd2uqq|vcvtudq2ps|vcvtudq2pd|vcvtusi2ps|vcvtusi2pd|vcvtusi2sd|vcvtusi2ss|vcvtuqq2ps|vcvtuqq2pd|vcvtqq2pd|vcvtqq2ps|vgetexppd|vgetexpps|vgetexpsd|vgetexpss|vgetmantpd|vgetmantps|vgetmantsd|vgetmantss|vfixupimmpd|vfixupimmps|vfixupimmsd|vfixupimmss|vrcp14pd|vrcp14ps|vrcp14sd|vrcp14ss|vrndscaleps|vrndscalepd|vrndscaless|vrndscalesd|vrsqrt14pd|vrsqrt14ps|vrsqrt14sd|vrsqrt14ss|vscalefps|vscalefpd|vscalefss|vscalefsd|valignd|valignq|vdbpsadbw|vpabsq|vpmaxsq|vpmaxuq|vpminsq|vpminuq|vprold|vprolvd|vprolq|vprolvq|vprord|vprorvd|vprorq|vprorvq|vpscatterdd|vpscatterdq|vpscatterqd|vpscatterqq|vscatterdps|vscatterdpd|vscatterqps|vscatterqpd|vpconflictd|vpconflictq|vplzcntd|vplzcntq|vpbroadcastmb2q|vpbroadcastmw2d|vexp2pd|vexp2ps|vrcp28pd|vrcp28ps|vrcp28sd|vrcp28ss|vrsqrt28pd|vrsqrt28ps|vrsqrt28sd|vrsqrt28ss|vgatherpf0dps|vgatherpf0qps|vgatherpf0dpd|vgatherpf0qpd|vgatherpf1dps|vgatherpf1qps|vgatherpf1dpd|vgatherpf1qpd|vscatterpf0dps|vscatterpf0qps|vscatterpf0dpd|vscatterpf0qpd|vscatterpf1dps|vscatterpf1qps|vscatterpf1dpd|vscatterpf1qpd|vfpclassps|vfpclasspd|vfpclassss|vfpclasssd|vrangeps|vrangepd|vrangess|vrangesd|vreduceps|vreducepd|vreducess|vreducesd|vpmovm2d|vpmovm2q|vpmovm2b|vpmovm2w|vpmovd2m|vpmovq2m|vpmovb2m|vpmovw2m|vpmullq|vpmadd52luq|vpmadd52huq|v4fmaddps|v4fmaddss|v4fnmaddps|v4fnmaddss|vp4dpwssd|vp4dpwssds|vpdpbusd|vpdpbusds|vpdpwssd|vpdpwssds|vpcompressb|vpcompressw|vpexpandb|vpexpandw|vpshld|vpshldv|vpshrd|vpshrdv|vpopcntd|vpopcntq|vpopcntb|vpopcntw|vpshufbitqmb|gf2p8affineinvqb|gf2p8affineqb|gf2p8mulb|vpclmulqdq|vaesdec|vaesdeclast|vaesenc|vaesenclast)[ \t]/' binary.asm

NOTA: probado con gawky nawk.


6

Desafortunadamente, no parece haber ninguna utilidad conocida a partir de esta fecha que detecte el conjunto de instrucciones requerido de un ejecutable dado.

Lo mejor que puedo sugerir para x86 es usarlo objdump -den el binario ELF para desarmar las secciones ejecutables en el lenguaje Gnu Assemply ( gas). A continuación, utilice de Shirk vimdefiniciones de sintaxis ya sea a greptravés del archivo de código ensamblador o escanear visualmente el código ensamblador para cualquiera de los gasOpcode_SSE41o gasOpcode_SANDYBRIDGE_AVXlas instrucciones que se ven en el Shirk de gas.vimarchivo.

El archivo de lenguaje ensamblador contiene las instrucciones a nivel de máquina ("códigos de operación") que el compilador generó cuando se compiló el programa. Si el programa se compiló con marcas de tiempo de compilación para instrucciones SSE o AVX, y el compilador emitió instrucciones SSE o AVX, entonces debería ver uno o más códigos opcionales SSE o AVX en la lista de desmontaje producida por objdump -d.

Por ejemplo, si lo hace grep vroundsdben el archivo de código de ensamblaje y encuentra una coincidencia, entonces sabe que el archivo binario requiere capacidades AVX para ejecutarse.

Hay bastantes instrucciones específicas de la subarquitectura para x86, como puede ver en el gas.vimarchivo de Shirk , por lo que hacer grepping para todos los códigos de operación para cada subarquitectura sería tedioso. Escribir un programa en C, Perl o Python para hacer esto podría ser una excelente idea para un proyecto de código abierto, especialmente si puede encontrar a alguien que lo extienda para ARM, PPC y otras arquitecturas.


¿Cuál es el propósito del gas: no pude encontrar cuál es ese programa?
user2284570

@ user2284570: edité la respuesta para relacionarla con tu comentario. HTH.
Jonathan Ben-Avraham

Sse4.2 + AVX + 3DNOW representan cientos de instrucciones.
Llevaría

@ user2284570: Sí, lo mencioné. Si necesita hacer esto regularmente, sería mejor escribir un script de Perl basado en Shirk gas.vim. OTOH, si este es un problema único, puede aprender fácilmente los patrones de los códigos de operación que diferencian las subarquitecturas.
Jonathan Ben-Avraham

Supongo que una biblioteca para tratar con
códigos de operación

2

Le di a escribir un script de utilidad de Python basado en las respuestas de Jonathan Ben-Avrahams y Kyselejsyrečeks. Es un guión grosero pero hace el trabajo.

https://gist.github.com/SleepProgger/d4f5e0a0ea2b9456e6c7ecf256629396 Descarga y convierte automáticamente el archivo gas.vim y admite el volcado de todas las operaciones usadas (opcionales no básicas), incluido el conjunto de características de donde provienen. Además, admite operaciones de búsqueda de conjunto de características.

Tries to detect which CPU features where used in a given binary.

positional arguments:
  executable            The executable to analyze or the command to lookup if
                        -l is set.

optional arguments:
  -h, --help            show this help message and exit
  -j JSON_SPECS, --json-specs JSON_SPECS
                        json file containing a command to feature mapping.
  -o JSON_OUTPUT, --json-output JSON_OUTPUT
                        json file to save the command to feature mapping
                        parsed from an gas.vim file. Defaults to same folder
                        as this scipt/specs.json
  -g GAS, --gas GAS     gas.vim file to convert to feature mapping.
  -nw, --no-json-save   Do not save converted mapping from gas.vim file.
  -b, --include-base    Include base instructions in the search.
  -l, --lookup-op       Lookup arch and feature for given command. Can be
                        regex.

Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.